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Foehn “observations” Last 14–22 years

• Foehn is a wind on the leeward side of a mountain range
• Characterized by a sharp increase in wind speed and changes in

temperature and relative humidity
• Strong effect on local climate and can cause severe damage
• Cannot be measured directly
• Classification based on mixture model with concomitants

Classification: Two-component mixture model with concomitants to
classify ‘foehn’ and ’no foehn’ (Stauffer 2023).
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Illustration of the Gaussian mixture model
Mixture model with:
• Two Gaussian components
• Potential temperature

differences to separate the
main components

• Concomitant model: logit model
using relative humidity (rh) and
wind speed (ff)

• Estimate based on 14–22 years
of data, 10 min resolution (Fig 3)

Figure 1: Illustrative example of the combined density for two different probabilities
p2 = {0.9,0.3} as returned by the concomitant model.

ERA5 reanalysis (Hersbach et al. 2023) 1940–2022

• Physical global atmospheric reanalysis data, hourly resolution
• Provides detailed long-term weather characterisation,

but no direct information about foehn
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Study area Examples of ERA5 variables

C.t500

temperature 500 hPa at ‘C’

C.tpsum6h

6 h precipitation sum at ‘C’

C.lt700_800

level thickness 700-800 hPa at ‘C’

diffmsl_m3hp0h_ULDR

difference mean sea level pressure

change ‘UL’/‘DR’ over past 3 hours

. . . ca. 500 variables in total

Figure 2: Location of the six stations in the European Alps (left). Triangle: Mountain
stations for classification. ‘Star’: Station location (C; center) and additional locations
upstream/downstream (U*/D*) used to calculate derived ERA5 variables (right).

Supervised learning

• Based on 14–22 years with foehn classification (‘yes’/‘no’)
• Estimate binary response model with ERA5 data as covariates
• Allows to reconstruct foehn occurrence from

1940–2022 on an hourly scale

Binary classifier: Here, a logit model with lasso regularization (Friedman
et al. 2023) is employed using ≈500 different covariates from ERA5.

Pr(foehn = yes) = f (ERA5)

Reconstruction: Obtain fitted foehn probabilities based on the estimated
classifier using

π̂1h = f̂ (ERA5).

As an alternative to logistic regression, any supervised learner for a
binary response could be used.
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Figure 3: Annual mean of daily maxima for all six stations (see Fig 2).
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Final result

• High-resolution (hourly) long-term time series of foehn
probabilities (≈720 000 hourly probabilities per station)

• Serves as input for additional applications

Example application

• Season-trend analysis on monthly basis for Ellbögen
• Identify changes/trends over the past eight decades

Season-trend decomposition: Following Dokumentov et al. (2022), a
model of the following form is employed.

π̂1m,t = Tt + St + Rt

where π̂1m,t is the monthly mean of daily maxima for time t, Tt a smooth
trend, St a smoothly changing seasonality, and Rt the remainder. The
results (Fig 4) show a slight upward trend over the second half of the last
century, but a stable seasonal pattern.
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Figure 4: Season-trend decomposition for Ellbögen based on monthly means of daily
maxima showing the temporal trend (top) as well as the underlying seasonality
(bottom) for the most recent eight decades.
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