

Graphical Assessment of Probabilistic Precipitation Forecasts

Reto Stauffer, Moritz N. Lang, Achim Zeileis

https://topmodels.R-Forge.R-project.org/

Introduction

Probabilistic predictions

- Modelling full probabilistic distribution
- Allows to retrieve the expected value, probabilities, exceedances, ...
- Important in many fields (e.g., medicine, economics, meteorology, ...)

Introduction

Probabilistic predictions

- Modelling full probabilistic distribution
- Allows to retrieve the expected value, probabilities, exceedances, ...
- Important in many fields (e.g., medicine, economics, meteorology, ...)

Objective

- Increasing sharpness conditional on calibration (*Gneiting et al. 2007a*)
- Optimization/model selection: proper scoring rules (Gneiting et al. 2007b)
- Graphical assessment: goodness of fit and possible misspecification

Probabilistic precipitation forecasting:

Accurate and reliable precipitation forecasts of increasing importance for e.g.:

- Tourism
- Agricultural applications
- Road safety and maintenance during winter season
- Risk assessment (droughts, floods, fire hazard, ...)
- Strategic resource planning (water supply, hydro power, transport, ...)

Probabilistic precipitation forecasting:

Accurate and reliable precipitation forecasts of increasing importance for e.g.:

- Tourism
- Agricultural applications
- Road safety and maintenance during winter season
- Risk assessment (droughts, floods, fire hazard, ...)
- Strategic resource planning (water supply, hydro power, transport, ...)

\Rightarrow Statistical weather prediction 'detour'

Weather forecasts

- Typically physically-based numerical weather prediction models
- Multiple runs with modified conditions ightarrow ensemble forecasts
- Various sources of possible errors due to necessary simplifications

Weather forecasts

- Typically physically-based numerical weather prediction models
- Multiple runs with modified conditions ightarrow ensemble forecasts
- Various sources of possible errors due to necessary simplifications

Statistical post-processing

- Use historical observations and ensemble forecasts
- Estimate statistical models to correct for possible forecast errors in both, expectation and uncertainty
- Apply correction to latest ensemble forecast

Data

- Station Innsbruck Airport, Austria
- 13 years of daily records (2000 2013; *N* = 4971)

Data

- Station Innsbruck Airport, Austria
- 13 years of daily records (2000 2013; *N* = 4971)
- Response: Observed 3 day accumulated precipitation (rain)
- Features: mean and standard deviation of accumulated precipitation (11-member ensemble; 5 8 days ahead; ensmean, enssd)

Data

- Station Innsbruck Airport, Austria
- 13 years of daily records (2000 2013; *N* = 4971)
- Response: Observed 3 day accumulated precipitation (rain)
- Features: mean and standard deviation of accumulated precipitation (11-member ensemble; 5 8 days ahead; ensmean, enssd)

Study goal

- Estimate three different parametric regression models
- Assessing goodness of fit using graphical assessment methods

Ensemble forecast example

Use case

Marginal distribution of observed Precipitation

Use case

Marginal distribution of observed Precipitation

Observed precipitation vs. mean ensemble forecast

Weather Forecasting

Statistical models:

Revisiting models by Messner, Mayr, and Zeileis (2010):

Weather Forecasting

Statistical models:

Revisiting models by Messner, Mayr, and Zeileis (2010):

$$\begin{array}{lll} \mbox{Distribution} & \mbox{Location} & \mbox{Scale} \\ \mbox{ols} & y_i \sim \mathcal{N}(\mu_i, \sigma_i^2) & \hat{\mu}_i = \hat{\beta}_0 + \hat{\beta}_1 \cdot \mbox{ensmean}_i & \mbox{log}(\hat{\sigma}_i) = \hat{\gamma}_0 \\ \mbox{hcnorm} & y_i \sim \mathcal{N}_0(\mu_i, \sigma_i^2) & \hat{\mu}_i = \hat{\beta}_0 + \hat{\beta}_1 \cdot \mbox{ensmean}_i & \mbox{log}(\hat{\sigma}_i) = \hat{\gamma}_0 + \hat{\gamma}_1 \cdot \mbox{log}(\mbox{ensmean}_i) \\ \mbox{hclog} & y_i \sim \mathcal{L}_0(\mu_i, \sigma_i^2) & \hat{\mu}_i = \hat{\beta}_0 + \hat{\beta}_1 \cdot \mbox{ensmean}_i & \mbox{log}(\hat{\sigma}_i) = \hat{\gamma}_0 + \hat{\gamma}_1 \cdot \mbox{log}(\mbox{ensmean}_i) \\ \end{array}$$

Model assessment

Scores: Continuous ranked probability score (CRPS) and logScore:

	ols	hcnorm	hclog
CRPS	0.913	0.877	0.876
logScore	1.915	1.804	1.799

Model assessment

Scores: Continuous ranked probability score (CRPS) and logScore:

	ols	hcnorm	hclog
CRPS	0.913	0.877	0.876
logScore	1.915	1.804	1.799

Graphical model assessment

- Important complement to proper scoring rules
- Checking marginal and probabilistic calibration
- Allows to identify possible misspecifications

Marginal calibration

Frequencies: Observed

Observed frequency $\mathsf{obs}_j = \sum_{i=1}^N Iig(y_i \in [b_j, b_{j+1})ig)$

Marginal calibration

Frequencies: Observed vs. expected

Observed frequency $\mathsf{obs}_j = \sum_{i=1}^N Iig(y_i \in [b_j, b_{j+1})ig)$

Expected frequency $\exp_{j} = \sum_{i=1}^{N} \left(F(b_{j+1}|\hat{\theta}_{i}) - F(b_{j}|\hat{\theta}_{i}) \right)$

Marginal calibration

Frequencies: $\sqrt{\text{Observed}}$ vs. $\sqrt{\text{expected}}$

Observed frequency $ext{obs}_j = \sum_{i=1}^N Iig(y_i \in [b_j, b_{j+1})ig)$

Expected frequency $\exp_{j} = \sum_{i=1}^{N} \left(F(b_{j+1}|\hat{\theta}_{i}) - F(b_{j}|\hat{\theta}_{i}) \right)$

 \Rightarrow Hanging rootogram

PIT residuals

Continuous case

$$u_i = F(y_i | \hat{\theta}_i)$$

Discrete case (Czado et al. 2009)

$$u_i = F(y_i - 1|\hat{\theta}_i) + \nu \left[F(y_i - 1|\hat{\theta}_i), F(y_i, |\hat{\theta}_i) \right]$$

PIT residuals

Continuous case

$$u_i = F(y_i | \hat{\theta}_i)$$

Discrete case (Czado et al. 2009)

$$u_i = F(y_i - 1|\hat{\theta}_i) + \nu \left[F(y_i - 1|\hat{\theta}_i), F(y_i, |\hat{\theta}_i) \right]$$

 \Rightarrow Uniform scale: PIT histogram

PIT residuals: Normal scale

Quantile residuals:

$$\hat{r}_i = \Phi^{-1}(F(y_i|\hat{\theta}_i)) = \Phi^{-1}(u_i)$$

Quantile residuals: Observed vs. expected

Quantile residuals:

$$\hat{r}_i = \Phi^{-1}(F(y_i|\hat{\theta}_i)) = \Phi^{-1}(u_i)$$

Data pairs:

$$(z_{(1)}, \hat{r}_{(1)}), \ldots, (z_{(N)}, \hat{r}_{(N)})$$

 \Rightarrow (Randomized) Q-Q residual plot

Quantile residuals: Deviations

Detrended Q-Q residuals:

$$(z_{(1)}, \hat{r}_{(1)} - z_{(1)}), \dots, (z_{(N)}, \hat{r}_{(N)} - z_{(N)})$$

 \Rightarrow Wormplot

topmodels implementation

R> library("topmodels")

Core functions:

```
R> rootogram(ols)
R> pithist(ols)
R> qqrplot(ols)
```

```
R> wormplot(ols)
```

topmodels implementation

```
R> library("topmodels")
```

Core functions:

R> rootogram(ols)
R> pithist(ols)
R> qqrplot(ols)
R> wormplot(ols)

Comparing different models:

```
R> plot(c(pithist(ols), pithist(hcnorm)), ...)
R> plot(c(pithist(ols), pithist(hcnorm)), single_graph = TRUE, style = "l", ...)
```

```
R> plot(c(qqrplot(ols), qqrplot(hcnorm)), ...)
R> plot(c(qqrplot(ols), qqrplot(hcnorm)), single_graph = TRUE, ...)
```

```
R> plot(c(wormplot(ols), wormplot(hcnorm)), ...)
R> plot(c(wormplot(ols), wormplot(hcnorm)), single_graph = TRUE, ...)
```

Model comparison

Hanging rootograms

Model comparison

Model comparison

Summary

Graphical assessments:

Various possibilities suggested in different parts of the literature.

- Rootogram
- Probability integral transform (PIT) histogram
- (Randomized) quantile-quantile residuals plot
- Detrended Q-Q residuals plot or worm plot
- Reliability diagram at prespecified thresholds

Summary

topmodels: Unifying toolbox for graphical model assessment.

• available on R-Forge at https://topmodels.R-Forge.R-project.org/

Concept: Unifying toolbox for probabilistic forecasts and graphical model assessment.

Graphics: Implemented in R base graphics and ggplot2.

Models: (g)lm, crch, disttree, and more to come.

References

Lang MN, Zeileis A *et al.* (2021). "topmodels: Infrastructure for Inference and Forecasting in Probabilistic Models." *R package version 0.2-0*. https://topmodels.R-Forge.R-project.org/

Czado C, Gneiting T, Held L (2009). "Predictive Model Assessment for Count Data." *Biometrics*, **65**(4), 1254–1261. doi:10.1111/j.1541-0420.2009.01191.x

Dunn PK, Smyth GK (1996). "Randomized Quantile Residuals." *Journal of Computational and Graphical Statistics*, **5**(3), 236–244. doi:10.2307/1390802

Gneiting T, Balabdaoui F, Raftery AE (2007a) "Probabilistic Forecasts, Calibration and Sharpness." *Journal of the Royal Statistical Society: Series B (Methodological)*, **69**(2), 243–268. doi:10.1111/j.1467-9868.2007.00587.x

Gneiting T, Raftery AE (2007b) "Strictly Proper Scoring Rules, Prediction, and Estimation." *Journal of the American Statistical Association*, **102**(477), 359–378. doi:10.1198/01621450600001437

Kleiber C, Zeileis A (2016). "Visualizing Count Data Regressions Using Rootograms." *The American Statistician*, **70**(3), 296–303. doi:10.1080/00031305.2016.1173590

Messner JW, Mayr GJ, Zeileis A (2016). "Heteroscedastic Censored and Truncated Regression with crch." *The R Journal.*, **8**(1), 173–181. doi:10.32614/RJ-2016-012

https://topmodels.R-Forge.R-project.org/

Reto.Stauffer@uibk.ac.at