
Spatio-Temporal Ensemble
Postprocessing over Complex Terrain
High-Resolution Precipitation Forecasts for Tyrol

https://retostauffer.org

https://retostauffer.org


Weather Forecasting

Numerical Weather Forecast Models

- estimate current state (analysis)

- predict future state (prognosis)

- ensemble systems: quantify uncertainty
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Weather Forecasting
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Weather Forecasting

Real Topography
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Ensemble Postprocessing

Concept

- based on historical forecasts and observations

- identify systematic errors in both, mean and variance

- apply correction to new forecasts

Statistical Models

- distributional regression models

- distributional forests

- neuronal networks
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Ensemble Postprocessing

Ensemble Model Output Statistics (EMOS; Gneiting 2005)
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Ensemble Postprocessing
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Ensemble Postprocessing

Daily Precipitation Sums

precipitation mm d−1
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Precipitation

- limited to positive values

- large fraction of days without rain

- Gaussian assumption inappropriate
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Censoring

Left-Censored Gaussian Distribution (N0)

PDF: φ0(yi|µi, σi) =

{
Φ(0|µi, σi) if yi = 0
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Censoring

Censored EMOS for Precipitation

y
1
2 ∼ N0

(
µ, σ

)
µ = β0 + β1 · P1/2

m

log(σ) = γ0 + γ1 · log
(
sd(P

1/2
m )

)
y: observed precipitation sum

N0: censored Gaussian distribution
Pm: precipitation forecast

m: ensemble member m ∈ {1 . . .M}
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Ensemble Postprocessing
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Station-Wise Postprocessing

- relatively simple

- interpolate ensemble forecasts

- apply non-homogeneous censored EMOS

- one model for each station
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Ensemble Postprocessing
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Station-Wise Postprocessing

- relatively simple

- interpolate ensemble forecasts

- apply non-homogeneous censored EMOS

- one model for each station
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Spatial Postprocessing

Standardized Anomaly Model Output Statistics
(SAMOS)

- remove location and season dependent
characteristics from the data

- pool all stations

- estimate one global regression model

Standardized Anomalies

y∗ =
y

1
2 − µ̃obs

σ̃obs
; P∗m =

P
1
2
m − µ̃P

σ̃P

10



Spatial Postprocessing

SAMOS Model Specification

y∗ ∼ Nvar

(
µ∗, σ∗

)
µ∗ = β∗0 + β∗1 · P∗m

log(σ∗) = γ∗0 + γ∗1 · log
(
sd(P∗m)

)
De-standardization

y
1
2 ∼ No

(
µ∗ · σ̃y + µ̃y, σ∗ · σ̃y

)

y∗/P∗: observed/forecasted standardized anomalies
Nvar: censored Gaussian distribution; varying censoring point

µ∗/σ∗ distributional parameters, anomaly scale

m: ensemble member m ∈ {1 . . .M}
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Spatial Postprocessing

Background Climatology

y
1
2 ∼ N0

(
µ̃y, σ̃y)

µ̃y = f1(alt) + f2(doy) + f3(lon, lat) + f4(doy, lon, lat)

log(σ̃y) = g1(alt) + g2(doy) + g3(lon, lat) + g4(doy, lon, lat)
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Ensemble Postprocessing

Parameter Estimation

`(θ | y) =
N∑

i=1

log φ0(yi, θ); θ = (β, γ)

θ̂ = argmax
θ∈R

(
`(θ | y)

)

- iterative weighted least squares

- Markov chain Monte Carlo (MCMC)

- gradient boosting

- distributional forests
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Ensemble Postprocessing

10.0 10.5 11.0 11.5 12.0 12.5 13.0

46
.8

47
.0

47
.2

47
.4

47
.6

Raw Ensemble Forecast

2018−11−19 06 UTC to 2018−11−20 06 UTC (+78h forecast)

0
2

4
6

8

pr
ec

ip
ita

tio
n 

[m
m

 d
−1

]

14



Ensemble Postprocessing
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Forecast Verification

Valuable Probabilistic Forecasts

- Are unbiased,

- as sharp as possible,

- but as wide as necessary.

Typical Scores

- univariate forecasts

- log-score, ignorance
- continuous ranked probability score (CRPS)
- probability integral transform histograms (PIT)

- multivariate forecasts

- energy score (ES)
- variogram score (VS)

- economic value score
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Snow and Snowfall Forecasts

Methodology

- standardized anomaly model output statistics (SAMOS)

daily precipitation forecasts
hourly temperature forecasts

- novel re-weighting scheme for temporal downscaling

- ensemble copula coupling
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Snow and Snowfall Forecasts
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Conclusion

Input
Observations and global forecasts:
MySQL, SQLite, GRIB, NetCDF.

Data
wrangling

Spatio-temporal data:
ncdf4, raster, sp, zoo, ecCodes.

Statistical
postprocessing

Probabilistic regression models:
mgcv, crch, bamlss.

Visualization
Forecast maps:
raster, PROJ.4, colorspace.

Deployment
Web-app with R interface:
MySQL, jQuery, bootstrap, leaflet.
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