retostauffer

Spatio-Temporal Ensemble Postprocessing over Complex Terrain

High-Resolution Precipitation Forecasts for Tyrol

https://retostauffer.org

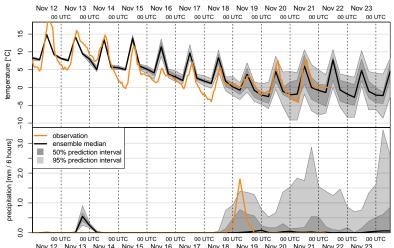
Weather Forecasting

Numerical Weather Forecast Models

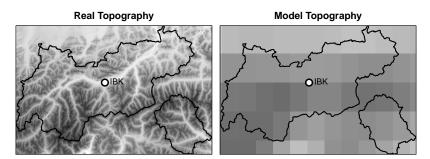
- estimate current state (analysis)
- predict future state (prognosis)
- ensemble systems: quantify uncertainty

Weather Forecasting

Ensemble Forecast for Innsbruck



Weather Forecasting



Concept

- based on historical forecasts and observations
- identify systematic errors in both, mean and variance
- apply correction to **new** forecasts

Statistical Models

- distributional regression models
- distributional forests
- neuronal networks

Ensemble Model Output Statistics (EMOS; Gneiting 2005)

$$y \sim \mathcal{N}(\mu, \sigma)$$

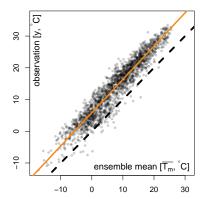
$$\mu = \beta_0 + \beta_1 \cdot \overline{T_m}$$

$$\log(\sigma) = \gamma_0 + \gamma_1 \cdot \log(\operatorname{sd}(T_m))$$

y: temperature observation \mathcal{N} : Gaussian distribution

 T_m : temperature forecast

m: ensemble member $m \in \{1 \dots M\}$



Ensemble Model Output Statistics (EMOS; Gneiting 2005)

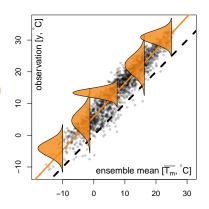
$$y \sim \mathcal{N}(\mu, \sigma)$$

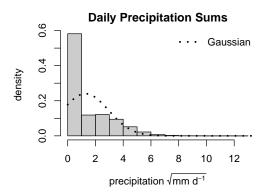
$$\mu = \beta_0 + \beta_1 \cdot \overline{T_m}$$

$$\log(\sigma) = \gamma_0 + \gamma_1 \cdot \log(\operatorname{sd}(T_m))$$

y: temperature observation \mathcal{N} : Gaussian distribution T_m : temperature forecast

m: ensemble member $m \in \{1 \dots M\}$





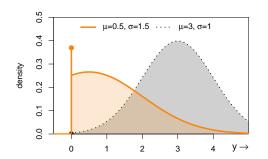
Precipitation

- limited to positive values
- large fraction of days without rain
- Gaussian assumption inappropriate

Censoring

Left-Censored Gaussian Distribution (\mathcal{N}_0 **)**

PDF:
$$\phi_0(y_i|\mu_i, \sigma_i) = \begin{cases} \Phi(0|\mu_i, \sigma_i) & \text{if } y_i = 0 \\ \phi(y_i|\mu_i, \sigma_i) & \text{else} \end{cases}$$



Censoring

Censored EMOS for Precipitation

$$y^{\frac{1}{2}} \sim \mathcal{N}_0(\mu, \sigma)$$

$$\mu = \beta_0 + \beta_1 \cdot \overline{P_m^{1/2}}$$

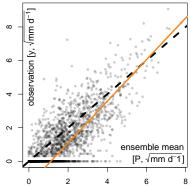
$$\log(\sigma) = \gamma_0 + \gamma_1 \cdot \log\left(\operatorname{sd}(P_m^{1/2})\right)$$

y: observed precipitation sum

 \mathcal{N}_0 : censored Gaussian distribution

 P_m : precipitation forecast

m: ensemble member $m \in \{1 ... M\}$



Station-Wise Postprocessing

- relatively simple
- interpolate ensemble forecasts
- apply non-homogeneous censored EMOS

- one model for each station

Station-Wise Postprocessing

- relatively simple
- interpolate ensemble forecasts
- apply non-homogeneous censored EMOS

- one model for each station

Spatial Postprocessing

Standardized Anomaly Model Output Statistics (SAMOS)

- remove location and season dependent characteristics from the data
- pool all stations
- estimate one global regression model

Standardized Anomalies

$$y^* = rac{y^{rac{1}{2}} - ilde{\mu}_{obs}}{ ilde{\sigma}_{obs}}; \quad P_m^* = rac{P_m^{rac{1}{2}} - ilde{\mu}_P}{ ilde{\sigma}_P}$$

Spatial Postprocessing

SAMOS Model Specification

$$\begin{array}{rcl} \mathbf{y}^* & \sim & \mathcal{N}_{\mathrm{Var}} \left(\mu^*, \sigma^* \right) \\ \mu^* & = & \beta_0^* + \beta_1^* \cdot \overline{P_m^*} \\ \log(\sigma^*) & = & \gamma_0^* + \gamma_1^* \cdot \log\left(\mathrm{sd}(P_m^*) \right) \end{array}$$

De-standardization

$$y^{\frac{1}{2}} \sim \mathcal{N}_o \Big(\mu^* \cdot \tilde{\sigma}_y + \tilde{\mu}_y, \ \sigma^* \cdot \tilde{\sigma}_y \Big)$$

 y^*/P^* : observed/forecasted standardized anomalies $\mathcal{N}_{\mathit{var}}$: censored Gaussian distribution; varying censoring point μ^*/σ^* distributional parameters, anomaly scale m: ensemble member $m \in \{1 \dots M\}$

Spatial Postprocessing

Background Climatology

$$y^{\frac{1}{2}} \sim \mathcal{N}_0(\tilde{\mu}_y, \tilde{\sigma}_y)$$

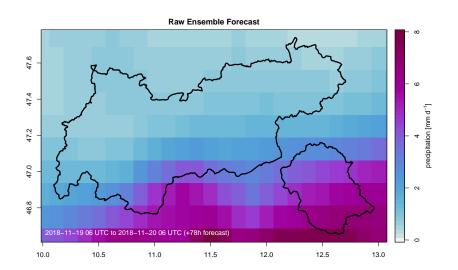
$$\tilde{\mu}_y = f_1(\mathsf{alt}) + f_2(\mathsf{doy}) + f_3(\mathsf{lon}, \mathsf{lat}) + f_4(\mathsf{doy}, \mathsf{lon}, \mathsf{lat})$$
 $\mathsf{log}(\tilde{\sigma}_y) = g_1(\mathsf{alt}) + g_2(\mathsf{doy}) + g_3(\mathsf{lon}, \mathsf{lat}) + g_4(\mathsf{doy}, \mathsf{lon}, \mathsf{lat})$

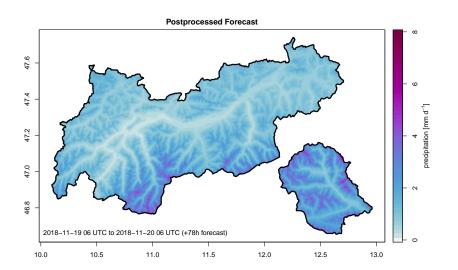
Parameter Estimation

$$\ell(\theta \mid y) = \sum_{i=1}^{N} \log \phi_0(y_i, \theta); \quad \theta = (\beta, \gamma)$$

$$\hat{\theta} = \underset{\theta \in \mathbb{R}}{\operatorname{argmax}} \Big(\ell(\theta \mid y)\Big)$$

- iterative weighted least squares
- Markov chain Monte Carlo (MCMC)
- gradient boosting
- distributional forests





Forecast Verification

Valuable Probabilistic Forecasts

- Are unbiased,
- as sharp as possible,
- but as wide as necessary.

Typical Scores

- univariate forecasts
 - log-score, ignorance
 - continuous ranked probability score (CRPS)
 - probability integral transform histograms (PIT)
- multivariate forecasts
 - energy score (ES)
 - variogram score (VS)

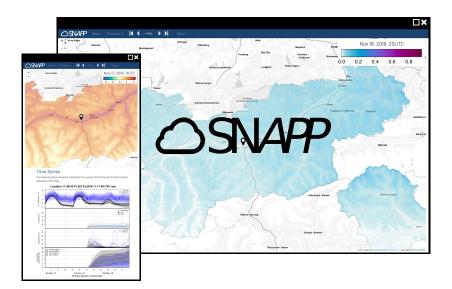
- economic value score

Snow and Snowfall Forecasts

Methodology

- standardized anomaly model output statistics (SAMOS)
 daily precipitation forecasts
 hourly temperature forecasts
- novel re-weighting scheme for temporal downscaling
- ensemble copula coupling

Snow and Snowfall Forecasts



Conclusion

Input

Observations and global forecasts: MySQL, SQLite, GRIB, NetCDF.

Data wrangling

Spatio-temporal data: ncdf4, raster, sp, zoo, ecCodes.

Statistical postprocessing

Probabilistic regression models: mgcv, crch, bamlss.

Visualization

Forecast maps: raster, PROJ.4, colorspace.

Deployment

Web-app with R interface: MySQL, jQuery, bootstrap, leaflet.

References

- **Stauffer, R.**, Mayr, G. J., Messner, J. W. and Zeileis, A. (2018). Hourly Probabilistic Snow Forecasts over Complex Terrain: A Hybrid Ensemble Postprocessing Approach. *Advances in Statistical Climatology, Meteorology and Oceanography*, accepted for publication.
- **Stauffer, R.**, Umlauf N., Messner, J. W., Georg, G.J., Zeileis A. (2017). Ensemble Postprocessing of Daily Precipitation Sums over Complex Terrain Using Censored High-Resolution Standardized Anomalies. *Monthly Weather Review* **145(3)**, 955–969. doi:10.1175/WWR-D-16-0260.1
- Stauffer, R., Mayr, G. J., Messner, J. W., Umlauf N., and Zeileis, A. (2017). Spatio-Temporal Precipitation Climatology Over Complex Terrain Using a Censored Additive Regression Model. *International Journal of Climatology* **37(7)**, 3264–3275. doi:10.1002/joc.4913
- Schlosser, L., Hothorn, T., **Stauffer, R.**, and Zeileis A. (2018). Distributional Regression Forests for Probabilistic Precipitation Forecasting in Complex Terrain. *Annals of Applied Statistics*, under review.
- Gebetsberger, M., **Stauffer, R.**, Mayr, G.J., and Zeileis, A. (2018). Skewed Logistic Distribution for Statistical Temperature Post-processing in Mountainous Areas. *Advances in Statistical Climatology, Meteorology and Oceanography*, revise and resubmit.
- **Stauffer, R.**, Mayr, G. J., Dabernig M., Zeileis, A. (2015). Somewhere Over the Rainbow: How to Make Effective Use of Colors in Meteorological Visualizations. *Bulletin of the American Meteorological Society* **96(2)**, 203–216. doi:10.1175/BAMS-D-13-00155.1
- Gneiting, T., Raftery, A. E., Westveld, A. H. and Goldman, T. (2005). Calibrated Probabilistic Forecasting Using Ensemble Model Output Statistics and Minimum CRPS Estimation. *Monthly Weather Review* 133(5): 1098-1118. doi:10.1175/MWR2904.1.

Thank you for your attention!

https://retostauffer.org