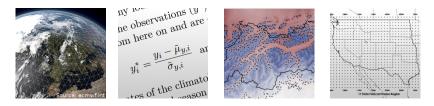


Standardized Anomaly Model Output Statistics Over Complex Terrain

Reto.Stauffer@uibk.ac.at

Outline



- statistical ensemble postprocessing
- introduction to SAMOS
- new snow amount forecasts in Tyrol
- sub-seasonal anomaly prediction over the U.S.

Numerical Weather Prediction

- 1 analysis: \rightarrow current state
- **2** forecast: \rightarrow future state

Error Sources

- observations
- simplified model world
- numerical approximation
- "unknown" atmospheric processes

Ensemble Prediction Systems

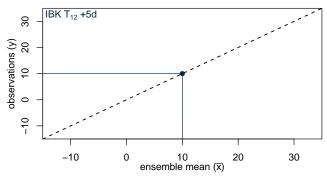
- to quantify the uncertainty
- number of members restricted
- typically underdispersive

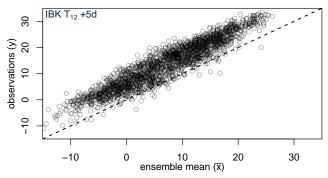
Forecast Error

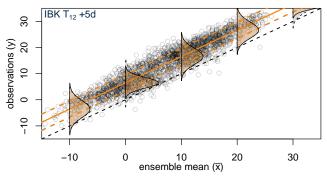
- total error = noise + systematic errors
- noise: unsystematic error
- *systematic errors*: correction possible

Ensemble Postprocessing

- correct bias
- correct uncertainty
- discrete \rightarrow full distribution
- probabilities, quantiles, extremes



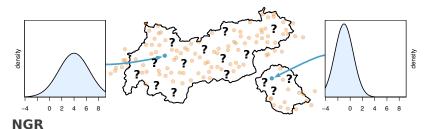




Non-homogeneous Gaussian Regression (NGR, EMOS)

$$\begin{aligned} \mathbf{y} \sim \mathcal{N}(\boldsymbol{\mu}, \sigma) \\ \boldsymbol{\mu} &= \beta_0 + \beta_1 \cdot \bar{\mathbf{x}} \\ \log(\sigma) &= \gamma_0 + \gamma_1 \cdot \log(s_x) \end{aligned}$$

Spatial Postprocessing



• allows station-wise corrections

• not suitable for spatial predictions

Alternative approach required.

What is SAMOS?

What is SAMOS?

"A **probabilistic spatio-temporal ensemble postprocessing method** using climatological background information to **remove site specific characteristics**, which allows to **estimate one** simple **regression model** for all stations and forecast lead times **at once**."

Reminder: NGR

$$\begin{aligned} \mathbf{y} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\sigma}) \\ \boldsymbol{\mu} &= \beta_0 + \beta_1 \cdot \bar{\mathbf{x}} \\ \log(\boldsymbol{\sigma}) &= \gamma_0 + \gamma_1 \cdot \log(s_x) \end{aligned}$$

$\text{NGR} \rightarrow \text{SAMOS}$

Transform all quantities (y, x) into standardized anomalies:

$$y^* = rac{y - ilde{\mu}_y}{ ilde{\sigma}_y}, \quad x^* = rac{x - ilde{\mu}_x}{ ilde{\sigma}_x}$$

 y^* , x^* : standardized anomalies

 $\tilde{\mu}_{\bullet}$, $\tilde{\sigma}_{\bullet}$: climatological properties of y, x

Gaussian SAMOS

$$\begin{aligned} \mathbf{y}^* &\sim \mathcal{N}(\mu^*, \sigma^*) \\ \mu^* &= \beta_0 + \beta_1 \cdot \bar{\mathbf{x}^*} \\ \log(\sigma^*) &= \gamma_0 + \gamma_1 \cdot \log(\mathbf{s}^*_{\mathbf{x}}) \end{aligned}$$

$\text{NGR} \rightarrow \text{SAMOS}$

Transform all quantities (y, x) into standardized anomalies:

$$y^* = rac{y - ilde{\mu}_y}{ ilde{\sigma}_y}, \quad x^* = rac{x - ilde{\mu}_x}{ ilde{\sigma}_x}$$

 y^* , x^* : standardized anomalies

 $\tilde{\mu}_{\bullet}$, $\tilde{\sigma}_{\bullet}$: climatological properties of y, x

Gaussian SAMOS

$$\begin{aligned} \mathbf{y}^* &\sim \mathcal{N}(\mu^*, \sigma^*) \\ \mu^* &= \beta_0 + \beta_1 \cdot \bar{\mathbf{x}^*} \\ \log(\sigma^*) &= \gamma_0 + \gamma_1 \cdot \log(\mathbf{s}^*_{\mathbf{x}}) \end{aligned}$$

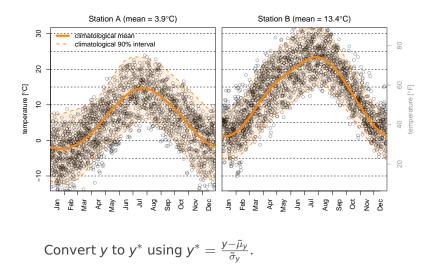
$\text{NGR} \rightarrow \text{SAMOS}$

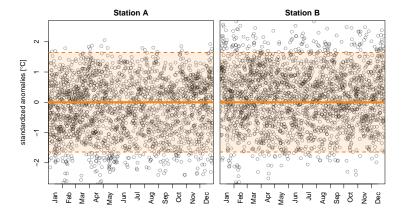
Transform all quantities (y, x) into standardized anomalies:

$$y^* = rac{y - ilde{\mu}_y}{ ilde{\sigma}_y}, \quad x^* = rac{x - ilde{\mu}_x}{ ilde{\sigma}_x}$$

 y^* , x^* : standardized anomalies

 $\tilde{\mu}_{\bullet}$, $\tilde{\sigma}_{\bullet}$: climatological properties of y, x





SAMOS Summary

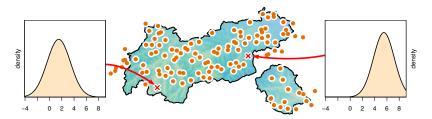
Spatio-Temporal Climatologies

- Account for ...
- seasonal and diurnal patterns,
- spatial differences (longitude, latitude, altitude),
- and possible interactions.

Standardized Anomalies

- location or station independent
- independent from season and time

SAMOS Summary



On the Anomaly Scale

- combine data from all stations and lead times
- estimate one "simple" model for the area of interest
- **correct** current ensemble forecast $\rightarrow \mu^*$, σ^*
- de-standardize:

$$\mu = \mu^* \cdot \tilde{\sigma_y} + \tilde{\mu}_y$$

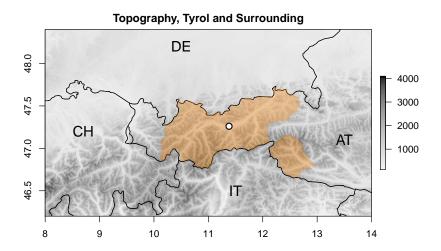
$$\sigma = \sigma^* \cdot \sigma_y$$

(cc) 🛊

Hourly Probabilistic Snow Forecasts Over Complex Terrain

A Hybrid Ensemble Postprocessing Approach

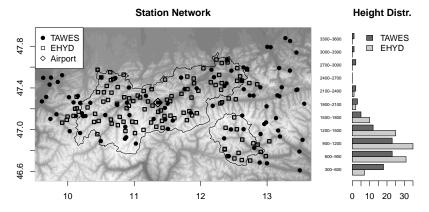
R Stauffer, GJ Mayr, JW Messner, A Zeileis



Problem: lack of reliable fresh snow observations.

Idea: Hybrid Approach

- forecast temperature & precipitation instead
- SAMOS
 - hourly temperature forecasts
 - daily precipitation forecasts
- ensemble copula coupling
 - restore spatio-temporal structure
 - convert temperature & precipitation into snow



NOAA/PSD Seminar Talk - May 21, 2018

Observation Data

- hourly 2 m air temperature: 90 stations, up to 10+ years
- daily precipitation sums: 110 stations, up to 40+ years

Numerical Weather Forecast Data

ECMWF hindcast

- 10 + 1 member ensemble
- 6-hourly output
- initialized twice a week (0000 UTC, 20 years)

ECMWF ensemble

- 50 + 1 member ensemble
- hourly output
- initialized 0000 UTC

SAMOS Model Assumptions

Temperature

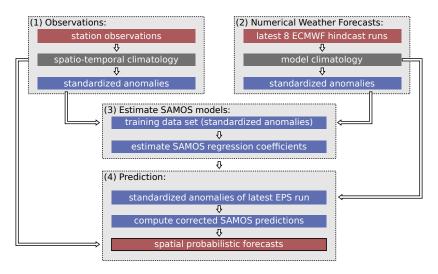
$$\begin{aligned} T^* \sim \mathcal{N}(\mu^*, \sigma^*) \\ \mu^* &= \beta_0 + \beta_1 \cdot \bar{x}^* \\ \log(\sigma^*) &= \gamma_0 + \gamma_1 \cdot \log(x^*) \end{aligned}$$

 x^* : std. anomalies of the 2m temperature.

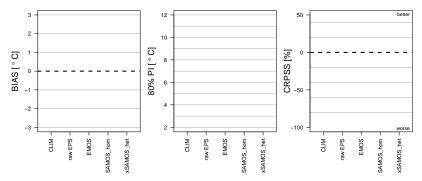
Precipitation

$$precip^{p^*} \sim \mathcal{L}_{cens}(\mu^*, \sigma^*)$$
$$\mu^* = \beta_0 + \beta_1 \cdot \bar{x}^* \cdot (1 - z) + \beta_2 \cdot z$$
$$\log(\sigma^*) = \gamma_0 + \gamma_1 \cdot \log(s_x^*) \cdot (1 - z)$$

x*: std. anomalies of power-transformed total precipitation.z: split-variable (binary) to handle unanimous predictions.

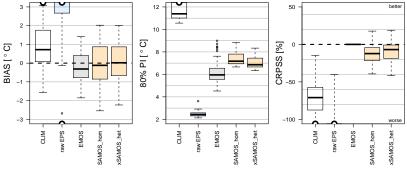


Temperature Forecasts



Verification: Dec 2016 - mid April 2017.

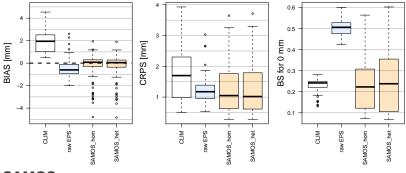
Temperature Forecasts



SAMOS

- Slightly outperformed by EMOS, ...
- but allows for spatial predictions.
- Ensemble spread: barely any additional information.

24 h Precipitation Forecasts



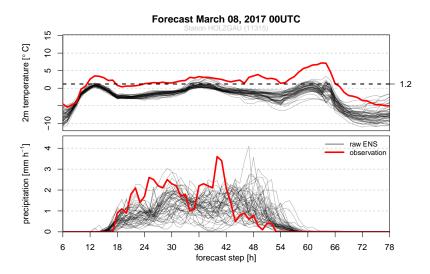
SAMOS

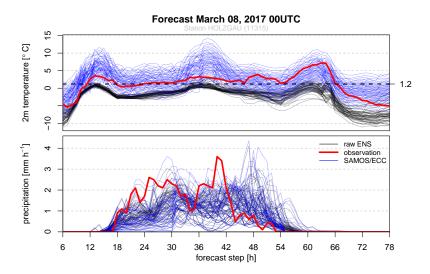
- Outperforms raw EPS, less skillful than for temperature.
- Ensemble variance barely any additional information.

How to Get Hourly Snow Predictions?

- combine temperature/precipitation using ECC
- temperature:
 - draw 51 member ensemble from corrected hourly ${\cal N}$
 - restore rank order structure
- 24 h precipitation:
 - draw 51 member ensemble from corrected \mathcal{L}_0
 - restore rank order structure
- hourly precipitation:
 - re-weight raw hourly ensemble forecasts using:

$$\omega_{ms} = rac{t \hat{p}_{copula,ms}}{t p_{EPS,ms}}$$

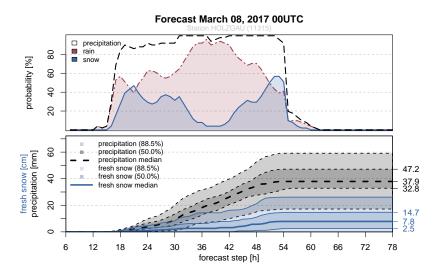


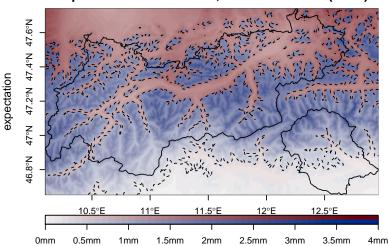


Hourly Snow Forecasts

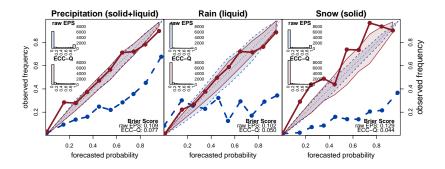
$$PI_{ms} = \begin{cases} \text{"dry" if:} \\ \text{precipitation}_{ms} \leq 0.05 \, \frac{mm}{h} \\ \text{"rain" if:} \\ \text{precipitation}_{ms} > 0.05 \, \frac{mm}{h} \wedge T_{2m,ms} > 1.2^{\circ} C \\ \text{"snow" if:} \\ \text{precipitation}_{ms} > 0.05 \, \frac{mm}{h} \wedge T_{2m,ms} \leq 1.2^{\circ} C \end{cases}$$

PI: precipitation type indicator {dry, rain, snow} m/s: copula member and forecast step





Expectation for March 10, 2017 00:00 UTC (+48h)



Empirical frequencies: precipitation 15.8 %, rain 9.8 %, snow 7.5 %.

Snow Forecasts Summary

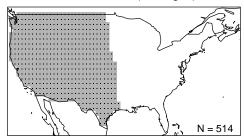
- ensemble spread: barely any information
- large spread for postprocessed temperature
- improvements: more pronounced for temperature
- combine different data sources
- use data sets with different temporal resolution
- reliable hourly probabilistic spatial snow forecasts

Sub-Seasonal Climate Forecast Rodeo

Improve Existing Sub-Seasonal Forecasts, Bureau of Reclamation

The Challenge

- predict anomalies
- mean temperature and accumulated precipitation
- week 3-4 and 5-6



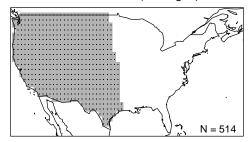
Area of Interest (1°x1° grid)

The Price

- 800 000 USD in total
- iff. anomaly forecasts are significantly better than:

a damped persistence

the CFSv2 itself



Area of Interest (1°x1° grid)

The Truth

- Climate Prediction Center's gridded data set
- gridded gauge data set
- gridded temperature data set
- climatology: 2-week mean 1981–2010

The Forecasts

- 4 member CFSv2
- mean over 8 runs (8 \times 4 = 32 member mean)

The Measure

$$ACC = \frac{\sum (f' \cdot o')}{\sqrt{\sum o'^2 \cdot \sum f'^2}}$$

The Idea

- CPC: provides observation climatology ($\tilde{\mu}_y$, $\tilde{\sigma}_y$)
- CVSv2 reforecasts: provide ensemble climatology ($\tilde{\mu}_x$, $\tilde{\sigma}_x$)
- apply "complex" homoscedastic AMOS/SAMOS

Model Assumption

$$\mathbf{y}^* \sim \mathcal{D}(\mu^*, \sigma^*)$$

Where μ^* may include:

- forecasted anomalies (2 m temperature, dewpoint, ...)
- spatial effects f(long, lat)
- teleconnection indices (NAO, NA, PNA; CPC)
- snow cover data (NSIDC)

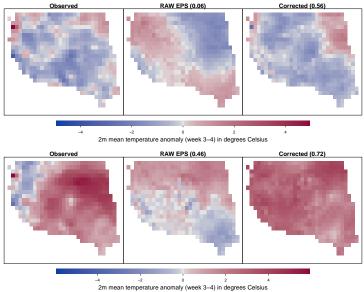
ECMWF Based Approach

- temperature (week 3-4)
- Gaussian AMOS
- 70 covariates
- optimization:

based on R package bamlss

likelihood-based gradient boosting

variable selection & parameter estimation



The Rodeo Leader Board

Weeks 3&4 Temperature

Team	Newest Score	Average Score 🔻
bgzimmerman	-0.0994	0.2855
prxwx	-0.1821	0.2265
StillLearning	0.029	0.217
DampedPersistence	-0.0794	0.1952
CFSv2	-0.3997	0.1589
asanteko2000	-0.1117	0.0909
lupoa13	-0.2187	0.0895
Salient	0.05	-0.1365

Weeks 3&4 Precipitation

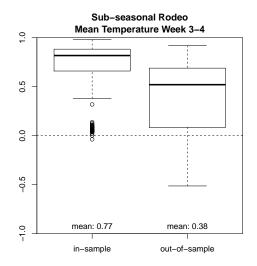
Team	Newest Score	Average Score 🔻
Salient	0.7758	0.2144
prxwx	0.0921	0.1711
lupoa13	-0.1367	0.1246
CFSv2	0.1837	0.0713
StillLearning	0.7987	0.0227
bgzimmerman	0.1087	-0.0221
asanteko2000	-0.7981	-0.0612
DampedPersistence	-0.7996	-0.1463

Weeks 5&6 Temperature

Team	Newest Score	Average Score 🔻
bgzimmerman	-0.4472	0.2357
CFSv2	0.5267	0.2192
StillLearning	0.1436	0.2044
prxwx	0.3105	0.2026
lupoa13	-0.5854	0.1675
asanteko2000	-0.1046	0.0897
DampedPersistence	0.1084	-0.0762
Salient	-0.8229	-0.09

Weeks 5&6 Precipitation

Team	Newest Score	Average Score 🔻
Salient	0.5897	0.2162
prxwx	0.0995	0.1208
StillLearning	0.5816	0.0941
lupoa13	0.0916	0.0931
bgzimmerman	0.303	0.0773
CFSv2	0.0692	0.0227
asanteko2000	-0.5561	-0.0879
DampedPersistence	-0.4375	-0.1613



References I

Gneiting, T, AE Raftery, AH Westveld, and T Goldman, 2005: Calibrated Probabilistic Forecasting Using Ensemble Model Output Statistics and Minimum CRPS Estimation. *Monthly Weather Review*, **133**, 1098–1118, doi:10.1175/MWR2904.1.

Dabernig, M, GJ Mayr, JW Messner, and A Zeileis, 2017: Spatial Ensemble Post-Processing with Standardized Anomalies. *Quarterly Journal of the Royal Meteorological Society*, **143**, 909–916, doi:10.1002/qj.2975.

Stauffer, R, N Umlauf, JW Messner, GJ Mayr, and A Zeileis, 2017: Ensemble Postprocessing of Daily Precipitation Sums over Complex Terrain Using Censored High-Resolution Standardized Anomalies. *Monthly Weather Review*, **145**, 955–969, 10.1175/MWR-D-16-0260.1.

Dabernig, M, GJ Mayr, JW Messner, and A Zeileis, 2017: Simultaneous Ensemble Postprocessing for Multiple Lead Times with Standardized Anomalies. *Monthly Weather Review*, **145**, 2523–2531,

10.1175/MWR-D-16-0413.1.

References II

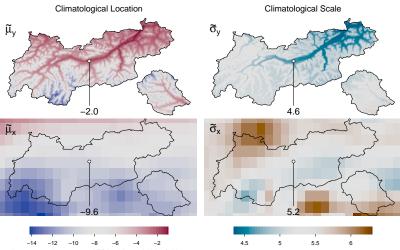
Gebetsberger, M, JW Messner, GJ Mayr, and A Zeileis, 2016: Tricks for Improving Non-Homogeneous Regression for Probabilistic Precipitation Forecasts: Perfect Predictions, Heavy Tails, and Link Functions. Working Papers, Faculty of Economics and Statistics, University of Innsbruck.

Stauffer R, GJ Mayr, JW Messner, and A Zeileis, 2018: Hourly Probabilistic Snow Forecasts over Complex Terrain: A Hybrid Ensemble Postprocessing Approach. Working papers, Faculty of Economics and Statistics, University of Innsbruck.

Thank you for your attention and special thanks to Tom for the invitation!

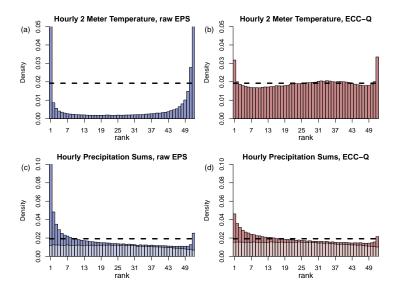
Appendix

SAMOS

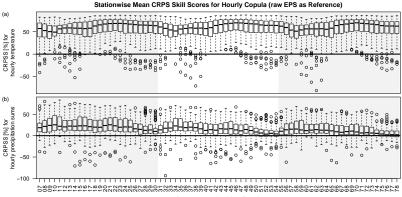


2m air temperature, January 1, 0000 UTC (+24h forecast). Unit: °Celsius

Snow Forecast: Hourly Calibration



Snow Forecast: Hourly Verification



forecast step or lead time (hours)