
Standardized Anomaly Model Output
Statistics Over Complex Terrain

Reto.Stauffer@uibk.ac.at

Reto.Stauffer@uibk.ac.at


Outline

• statistical ensemble postprocessing

• introduction to SAMOS

• new snow amount forecasts in Tyrol

• sub-seasonal anomaly prediction over the U.S.
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Ensemble Postprocessing

Numerical Weather Prediction

1 analysis: → current state

2 forecast: → future state

Error Sources

• observations

• simplified model world

• numerical approximation

• “unknown” atmospheric processes

Ensemble Prediction Systems

• to quantify the uncertainty

• number of members restricted

• typically underdispersive
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Ensemble Postprocessing

Forecast Error

• total error = noise + systematic errors

• noise: unsystematic error

• systematic errors: correction possible

Ensemble Postprocessing

• correct bias

• correct uncertainty

• discrete→ full distribution

• probabilities, quantiles, extremes
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Ensemble Postprocessing

−10 0 10 20 30

−
10

0
10

20
30

ensemble mean (x)

ob
se

rv
at

io
ns

 (
y)

IBK T12 +5d

●

Non-homogeneous Gaussian Regression (NGR, EMOS)

y ∼ N
(
µ, σ

)
µ = β0 + β1 · x̄

log(σ) = γ0 + γ1 · log(sx)

NOAA/PSD Seminar Talk – May 21, 2018 4



Ensemble Postprocessing

−10 0 10 20 30

−
10

0
10

20
30

ensemble mean (x)

ob
se

rv
at

io
ns

 (
y)

IBK T12 +5d

Non-homogeneous Gaussian Regression (NGR, EMOS)

y ∼ N
(
µ, σ

)
µ = β0 + β1 · x̄

log(σ) = γ0 + γ1 · log(sx)

NOAA/PSD Seminar Talk – May 21, 2018 4



Ensemble Postprocessing
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Spatial Postprocessing
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NGR

• allows station-wise corrections

• not suitable for spatial predictions

Alternative approach required.
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SAMOS

What is SAMOS?
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SAMOS

What is SAMOS?

“A probabilistic spatio-temporal ensemble
postprocessing method using climatological background
information to remove site specific characteristics, which
allows to estimate one simple regression model for all
stations and forecast lead times at once.”
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SAMOS

Reminder: NGR

y ∼ N
(
µ, σ

)
µ = β0 + β1 · x̄

log(σ) = γ0 + γ1 · log(sx)

NGR → SAMOS

Transform all quantities (y, x) into standardized anomalies:

y∗ =
y− µ̃y
σ̃y

, x∗ =
x− µ̃x
σ̃x

y∗, x∗: standardized anomalies

µ̃•, σ̃•: climatological properties of y, x
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SAMOS

Gaussian SAMOS

y∗ ∼ N
(
µ∗, σ∗

)
µ∗ = β0 + β1 · x̄∗

log(σ∗) = γ0 + γ1 · log(s∗x)

NGR → SAMOS

Transform all quantities (y, x) into standardized anomalies:

y∗ =
y− µ̃y
σ̃y

, x∗ =
x− µ̃x
σ̃x

y∗, x∗: standardized anomalies

µ̃•, σ̃•: climatological properties of y, x
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SAMOS

Gaussian SAMOS
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SAMOS
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SAMOS
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SAMOS Summary

Spatio-Temporal Climatologies

• Account for ...

• seasonal and diurnal patterns,

• spatial differences (longitude, latitude, altitude),

• and possible interactions.

Standardized Anomalies

• location or station independent

• independent from season and time
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SAMOS Summary
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On the Anomaly Scale

• combine data from all stations and lead times

• estimate one “simple” model for the area of interest

• correct current ensemble forecast→ µ∗, σ∗

• de-standardize:

µ = µ∗ · σ̃y + µ̃y

σ = σ∗ · σ̃y
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Hourly Probabilistic Snow Forecasts
Over Complex Terrain
A Hybrid Ensemble Postprocessing Approach

R Stauffer, GJ Mayr, JW Messner, A Zeileis



Snow Forecasts
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Problem: lack of reliable fresh snow observations.
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Snow Forecasts

Idea: Hybrid Approach

• forecast temperature & precipitation instead

• SAMOS
• hourly temperature forecasts
• daily precipitation forecasts

• ensemble copula coupling
• restore spatio-temporal structure
• convert temperature & precipitation into snow
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Snow Forecasts
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Observation Data

• hourly 2 m air temperature: 90 stations, up to 10+ years

• daily precipitation sums: 110 stations, up to 40+ years

NOAA/PSD Seminar Talk – May 21, 2018 13



Snow Forecasts

Numerical Weather Forecast Data

ECMWF hindcast

• 10 + 1 member ensemble

• 6-hourly output

• initialized twice a week (0000 UTC, 20 years)

ECMWF ensemble

• 50 + 1 member ensemble

• hourly output

• initialized 0000 UTC
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Snow Forecasts

SAMOS Model Assumptions
Temperature

T∗ ∼ N (µ∗, σ∗)

µ∗ = β0 + β1 · x̄∗

log(σ∗) = γ0 + γ1 · log(x∗)

x∗: std. anomalies of the 2m temperature.

Precipitation

precipp∗ ∼ Lcens(µ∗, σ∗)
µ∗ = β0 + β1 · x̄∗ · (1− z) + β2 · z

log(σ∗) = γ0 + γ1 · log(s∗x) · (1− z)

x∗: std. anomalies of power-transformed total precipitation.

z: split-variable (binary) to handle unanimous predictions.
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Snow Forecasts

(1) Observations:

standardized anomalies

station observations

spatio-temporal climatology

(2) Numerical Weather Forecasts:

standardized anomalies

latest 8 ECMWF hindcast runs

model climatology

(3) Estimate SAMOS models:

estimate SAMOS regression coefficients

training data set (standardized anomalies)

(4) Prediction:

spatial probabilistic forecasts

standardized anomalies of latest EPS run

compute corrected SAMOS predictions
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Snow Forecasts

Temperature Forecasts
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Verification: Dec 2016 - mid April 2017.
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Snow Forecasts

Temperature Forecasts
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SAMOS

• Slightly outperformed by EMOS, ...

• but allows for spatial predictions.

• Ensemble spread: barely any additional information.
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Snow Forecasts

24 h Precipitation Forecasts
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SAMOS

• Outperforms raw EPS, less skillful than for temperature.

• Ensemble variance barely any additional information.
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Snow Forecasts

How to Get Hourly Snow Predictions?

• combine temperature/precipitation using ECC

• temperature:
• draw 51 member ensemble from corrected hourly N
• restore rank order structure

• 24 h precipitation:
• draw 51 member ensemble from corrected L0

• restore rank order structure

• hourly precipitation:
• re-weight raw hourly ensemble forecasts using:

ωms =
t̂pcopula,ms

tpEPS,ms
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Snow Forecasts

−
10

0
5

10
15

Index

2m
 te

m
pe

ra
tu

re
 [°

 C
]

Forecast March 08, 2017 00UTC
Station HOLZGAU (11315)

1.2

0
1

2
3

4

pr
ec

ip
ita

tio
n 

[m
m

 h
−1

] raw ENS
observation

6 12 18 24 30 36 42 48 54 60 66 72 78
forecast step [h]

NOAA/PSD Seminar Talk – May 21, 2018 20



Snow Forecasts
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Snow Forecasts

Hourly Snow Forecasts

PIms =



“dry” if:

precipitationms ≤ 0.05 mm
h

“rain” if:

precipitationms > 0.05 mm
h ∧ T2m,ms > 1.2◦ C

“snow” if:

precipitationms > 0.05 mm
h ∧ T2m,ms ≤ 1.2◦ C

PI: precipitation type indicator {dry, rain, snow}

m/s: copula member and forecast step
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Snow Forecasts
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Snow Forecasts
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Snow Forecasts
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Empirical frequencies:
precipitation 15.8 %, rain 9.8 %, snow 7.5 %.
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Snow Forecasts Summary

• ensemble spread: barely any information

• large spread for postprocessed temperature

• improvements: more pronounced for temperature

• combine different data sources

• use data sets with different temporal resolution

• reliable hourly probabilistic spatial snow forecasts
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Sub-Seasonal Climate Forecast Rodeo
Improve Existing Sub-Seasonal Forecasts, Bureau of Reclamation
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The Rodeo

The Challenge

• predict anomalies

• mean temperature and accumulated precipitation

• week 3-4 and 5-6

Area of Interest (1°x1° grid)

N = 514
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The Rodeo

The Price

• 800 000 USD in total

• iff. anomaly forecasts are significantly better than:

a damped persistence

the CFSv2 itself

Area of Interest (1°x1° grid)

N = 514
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The Rodeo

The Truth

• Climate Prediction Center’s gridded data set

• gridded gauge data set

• gridded temperature data set

• climatology: 2-week mean 1981–2010

The Forecasts

• 4 member CFSv2

• mean over 8 runs (8× 4 = 32 member mean)

The Measure

ACC =

∑(
f ′ · o′

)√∑
o′2 ·

∑
f ′2
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The Rodeo

The Idea

• CPC: provides observation climatology (µ̃y, σ̃y)

• CVSv2 reforecasts: provide ensemble climatology (µ̃x, σ̃x)

• apply “complex” homoscedastic AMOS/SAMOS

Model Assumption

y∗ ∼ D
(
µ∗, σ∗

)
Where µ∗ may include:

• forecasted anomalies (2 m temperature, dewpoint, . . . )

• spatial effects f(long, lat)

• teleconnection indices (NAO, NA, PNA; CPC)

• snow cover data (NSIDC)
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The Rodeo

ECMWF Based Approach

• temperature (week 3-4)

• Gaussian AMOS

• 70 covariates

• optimization:

based on R package bamlss

likelihood-based gradient boosting

variable selection & parameter estimation
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The Rodeo
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The Rodeo Leader Board
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The Rodeo
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Thank you for your attention
and special thanks to Tom for the invitation!
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SAMOS

Climatological Location

µ~y

●●

−2.0

µ~x

●●

−9.6

−14 −12 −10 −8 −6 −4 −2

2m air temperature, January 1, 0000 UTC (+24h forecast). Unit:  °Celsius

Climatological Scale

σ~y

●●

4.6

σ~x

●●

5.2

4.5 5 5.5 6

NOAA/PSD Seminar Talk – May 21, 2018 38



Snow Forecast: Hourly Calibration

Hourly 2 Meter Temperature, raw EPS
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Hourly Precipitation Sums, raw EPS
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Snow Forecast: Hourly Verification
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