

Somewhere Over the Rainbow: How to Make Effective Use of Colors in Scientific Visualizations

Reto Stauffer

http://hclwizard.org

Introduction

Color:

- Integral element in graphical displays.
- Easily available in (statistical) software.
- Omnipresent in (electronic) publications: Technical reports, electronic journal articles, presentation slides.

Introduction

Color:

- Integral element in graphical displays.
- Easily available in (statistical) software.
- Omnipresent in (electronic) publications: Technical reports, electronic journal articles, presentation slides.

Problem: Little guidance about how to choose appropriate colors for a particular visualization task.

Question: What are useful color palettes for coding qualitative and quantitative variables?

Introduction

Main goal of our work:

- Raise awareness of the issue.
- Introduce Hue-Chroma-Luminance (HCL) model.
 - Based on human perception.
 - · Better control for choosing color palettes.
- Provide convenient software for exploring and assessing HCL-based palettes.

Common Sense

Using Red-Green-Blue Based Color Maps

RGB color space: And the (in)famous rainbow color palette.

RGB color space: And the (in)famous rainbow color palette.

- The default color in many software packages.
- Conveniently used by many practitioners.
- Defaults only change slowly (if at all).

- The default color in many software packages.
- Conveniently used by many practitioners.
- Defaults only change slowly (if at all).

Question: Everybody does it – why should it be wrong?

Original figure as published by the NOAA.

NOAA forecast, www.noaa.gov. 2012-10-27.

Original figure as published by the NOAA.

Original figure as published by the NOAA.

Original figure as published by the NOAA.

Gradients:

Very strong

Saturation

Highly-saturated colors

Discontinuous

Bright, dark, bright, dark, . . .

Desaturated version of the original figure.

AssignmentNo longer unique

120-hour Day 1-5 Rainfall Forecast

Desaturated version of the original figure.

Desaturated version of the original figure.

AssignmentNo longer unique

InterpretationWhere is the maximum?

Desaturated version of the original figure.

AssignmentNo longer unique

InterpretationWhere is the maximum?

FocusOn dark artefacts

120-hour Day 1-5 Rainfall Forecast

Desaturated version of the original figure.

Desaturated version of the original figure.

What color-blind people see (red-green weakness). About **5% of all Europeans** are affected.

End-user Who is it?

What color-blind people see (red-green weakness). About **5% of all Europeans** are affected.

What color-blind people see (red-green weakness). About **5% of all Europeans** are affected.

End-user Who is it?

ConsiderVisual constraints?

Challenges

Summary: The colors in a palette should

- be simple and natural,
- not be unappealing,
- highlight the important information,
- not mislead the reader,
- work everywhere and for everyone.

Challenges

Summary: The colors in a palette should

- be simple and natural,
- not be unappealing,
- · highlight the important information,
- · not mislead the reader,
- work everywhere and for everyone.

In practice:

- People often do not think about it at all.
- ... and simply use default colors.

Challenges

Summary: The colors in a palette should

- be simple and natural,
- not be unappealing,
- · highlight the important information,
- · not mislead the reader,
- work everywhere and for everyone.

In practice:

- People often do not think about it at all.
- ... and simply use default colors.

Potential problems:

- For end users reviewers, supervisor, collegue, customer.
- For your own day-to-day work.

The Hue-Chroma-Luminance Color Space A perception-based Color Space

Perception-Based Way: HCL

Advantages:

Hue: Type of color.

· Chroma: Colorfullness.

• Luminance: Brightness.

Perception-Based Way: HCL

- Hue (defines the color)
- Chroma (defines the colorness) and
- Luminance (defines the brightness)

Same information, changed color scheme.

Colors:

Smooth gradients.

120-hour Day 1-5 Rainfall Forecast

Same information, changed color scheme.

120-hour Day 1-5 Rainfall Forecast

Same information, changed color scheme.

Colors:

Smooth gradients.

Information:

Guiding, no hidden information.

Same information, changed color scheme.

Colors:

Smooth gradients.

Information:

Guiding, no hidden information.

Works:

Screen, projector, gray-scaled device.

Hurricane Sandy 120-hour Day 1-5 Rainfall Forecast

Desaturated representation of the HCL-version.

Assignment:

Higher values \Rightarrow lower luminance.

Desaturated representation of the HCL-version.

120-hour Day 1-5 Rainfall Forecast

Desaturated representation of the HCL-version.

Assignment:

Higher values \Rightarrow lower luminance.

Focus:

leads readers to most important areas.

HCL Version

120-hour Day 1-5 Rainfall Forecast

Desaturated representation of the HCL-version.

Assignment:

Higher values \Rightarrow lower luminance.

Focus:

leads readers to most important areas.

Summary:

Solved a lot of problems by changing the color palette.

Warning Map Example

Colorized
Original (left)
HCL idea (right)

UBIMET GmbH, www.uwz.at, 2013-05-31.

Warning Map Example

Colorized
Original (left)
HCL idea (right)

Gray-scale

Warning Map Example

Colorized
Original (left)
HCL idea (right)

Gray-scale

Deuteranopia Red-Green weakness

Color Palettes: Qualitative

Goal: Code quantitative data.

Color Palettes: Qualitative

Goal: Code quantitative data.

Color Palettes: Qualitative

Goal: Code quantitative data.

Solution: Take colors with different hues, but keep chroma and luminance constant. E.g.: (H, 50, 70)

Color Palettes: Sequential

Goal: Code quantitative data (e.g., probabilities) where one side is of main interest.

Color Palettes: Sequential

Goal: Code quantitative data (e.g., probabilities) where one side is of main interest.

Solution: Constant hue and changing chroma/luminance.

E.g., (90 - 0, 30 - 100, 90 - 50).

Color Palettes: Diverging

Goal: Code quantitative data and highlight both ends of the spectrum (e.g., anomalies, wet/dry, probabilities, ...).

Color Palettes: Diverging

Goal: Code quantitative data and highlight both ends of the spectrum (e.g., anomalies, wet/dry, probabilities, ...).

Solution: Diverging color schemes; combine sequential schemes with smooth transition.

Color Palettes: Diverging

Goal: Code quantitative data and highlight both ends of the spectrum (e.g., anomalies, wet/dry, probabilities, ...).

Model Comparison

Solution: Diverging color schemes; combine sequential schemes with smooth transition.

Experiences With Practitioners

In the beginning

- Hesitation of colleagues.
- "Not necessary!"
- "Why should we change existing products?"
- "Everybody does it like this ..."

Experiences With Practitioners

In the beginning

- · Hesitation of colleagues.
- "Not necessary!"
- "Why should we change existing products?"
- "Everybody does it like this . . . "

A few days later

- Mainly positive feedback.
- Decrease of misinterpretations in classroom ("Weather & Forecast").
- "Much easier to interpret . . . "
- "How can I make use of those palettes (in my software)?"

The R colorspace Package

A perception-based Color Space


```
> library('colorspace')
> # Interactively choosing color palettes
> #
> # Variant A:
> # pal <- choose_palette()
> #
> # Variant B (requires shiny and shinyjs):
> # pal <- hclwizard()</pre>
```


Figure: Screenshot of the tikz choose_palette interface.

Figure: Screenshot of the hclwizard interface.

Use colorspace package on command-line level

```
> # choose_palette and hclwizard return a colormap function
> class(pal)
[1] "function"
> # function (n, h = c(12, 265), c = 80, l = c(25, 95), power = 0.7,
> # fixup = TRUE, gamma = NULL, alpha = 1, ...)
```

```
Use colorspace package on command-line level
> # choose_palette and hclwizard return a colormap function
> class(pal)
[1] "function"
> # function (n, h = c(12, 265), c = 80, l = c(25, 95), power = 0.7,
             fixup = TRUE, gamma = NULL, alpha = 1, ...)
> #
Draw a color map with N colors:
> pal(3)
[1] "#7C0607" "#F1F1F1" "#1F28A2"
> pal(9)
[1] "#7C0607" "#953C3D" "#AF6869" "#CA9C9C" "#F1F1F1" "#A3A4C9" "#7577B
[8] "#4D50A1" "#1F28A2"
```


Basic colorspace wrapper methods:

```
> qual <- rainbow_hcl(n=11)
> seq <- sequential_hcl(n=11, h=0, l=c(90,40), c.=c(0,60))
> heat <- heat_hcl(n=11, h=c(0,-120), l=c(70,40), c.=c(30,60))
> div <- diverge_hcl(n=11, h=c(270,120), c=60, l=c(50,80))</pre>
```


Assess the spectrum of a color map:

```
> div <- diverge_hcl(n=91, h=c(270,120), c=60, l=c(50,80))
> specplot( div )
```


Assess the spectrum of a color map:

- > rainbow <- rainbow(91)</pre>
- > specplot(rainbow)

Use colorspace to convert colors:

```
> div <- diverge_hcl(n=5, h=c(270,120), c=60, l=c(50,80))
> RGB <- hex2RGB( div );</pre>
                                RGR
[1,] 0.4705882 0.4274510 0.7215686
[2,] 0.6666667 0.6549020 0.7568627
[3,] 0.7764706 0.7764706 0.7764706
[4,] 0.6039216 0.6862745 0.5803922
[5,] 0.2823529 0.5215686 0.1529412
> # Convert to HCL
> HCL <- as(RGB, "polarLUV");</pre>
                              HCL.
[1,] 49.96609 60.378199003 270.31045
[2,] 69.49331 20.598091195 270.26623
[3.] 79.88122 0.006140369
[4,] 69.23223 21.080046408 119.96933
[5,] 49.85643 59.608000199 119.81271
```

One of the "core functions" is polarLUV:

```
> L <- seq(100, 30, lengt=12)
> C <- seq(40, 80, length=12)
> H <- rep( c(0,120,240), c(4,4,4) )
> HCL <- polarLUV(H=H, C=C, L=L)</pre>
```

One of the "core functions" is polarLUV:

```
> L <- seq(100, 30, lengt=12)
> C <- seq(40, 80, length=12)
> H <- rep( c(0,120,240), c(4,4,4) )
> HCL <- polarLUV(H=H, C=C, L=L)</pre>
```

Convert colors to hexadeimal representation:

```
> hexT <- hex( as(HCL, "RGB"), fixup=TRUE)
> hexF <- hex( as(HCL, "RGB"), fixup=FALSE)</pre>
```



```
One of the "core functions" is polarLUV:
> L <- seq(100, 30, lengt=12)
> C <- seq(40, 80, length=12)
> H \leftarrow rep(c(0,120,240), c(4,4,4))
> HCL <- polarLUV(H=H, C=C, L=L)
What does the fixup=TRUE:
> as(HCL,"RGB")
 [1.] 1.50358973 0.85466492 0.95620852
 [2,] 1.33963389 0.70133126 0.80120053
 [3,] 1.18684461 0.56676651 0.66377437
 [4.] 1.04495144 0.44977227 0.54287660
 [5.] 0.27519179 0.56279146 0.20191278
 [6.] 0.19728039 0.46266385 0.12965811
 [7.] 0.13385835 0.37503736 0.07240051
 [8.] 0.08354332 0.29909188 0.02861425
 [9.] -0.01705634 0.20360461 0.48078327
[10,] -0.05184201 0.15500028 0.41481690
[11,] -0.07965869 0.11583956 0.36140338
[12,] -0.10459109 0.08556191 0.32440858
```

Summary

Choice of colors:

- Use color with care!
- Think about who the readers/users are.
- Avoid large areas of flashy, highly-saturated colors.
- Employ monotonic luminance scale for numerical data.

Try it yourself:

- http://hclwizard.org
- colorspace in R.

References

Zeileis, A., K. Hornik, and P. Murrell (2009): Escaping RGBland: Selecting colors for statistical graphics. *Computational Statistics & Data Analysis*, **53**(9), 3259–3270. http://doi.org/10.1016/j.csda.2008.11.033.

Stauffer, R., G.J. Mayr, M. Dabernig, and A. Zeileis (2015): Somewhere Over the Rainbow: How to Make Effective Use of Colors in Meteorological Visualizations. *Bulletin of the American Meteorological Society*, **96**(2), 203–216. http://doi.org/10.1175/BAMS-D-13-00155.1.

Ihaka R., P. Murrell, K. Hornik, J.C. Fisher, and A. Zeileis (2016): colorspace: Color Space Manipulation. R package version 1.3-2. URL https://CRAN.R-project.org/package=colorspace

Lumley T. (2006): Color Coding and Color Blindness in Statistical Graphics, ASA Statistical Computing & Graphics Newsletter, **17**(2), 4–7.

Ihaka R. (2003): Colour for Presentation Graphics, *Proceedings of the 3rd International Workshop on Distributed Statistical Computing*, Vienna (A), ISSN 1609-395X,

www.ci.tuwien.ac.at/Conferences/DSC-2003/Proceedings.

Thank you for your attention!

And Today?

Volume 32 No. 4 August 2017

ISSN: 0882-8156; eISSN: 1520-0434

About Weather and Forecasting

Current Staff and Editors

Instructions to Authors

Submit Manuscript

Editorials

RSS feed

2015

Articles Published

119

Impact Factor

1.972* (#36)

* 2015 Thompson-ISI Impact Factor (and ranking out of 84 journals) in the Meteorology and Atmospheric Science category

Author Index

And Today? (Lin et al. 2017)

And Today? (Lin et al. 2017)

And Today? (Yang et al. 2017)

And Today? (Yang et al. 2017)

And Today? (Wang et al. 2017)

And Today? (Wang et al. 2017)

And Today? (Lien et al. 2017)

