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The Project: SnowSafeFX

Project goals

• improve skill of new snow amount forecasts

• spatial probabilistic prediction, Tyrol

Early remark: Our “snow” is still a bit liquid.
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The Project: SnowSafeFX

Importance

• outdoor sportsmen:
210 avalanche events,
31 deaths (winter 14/15, A)1

• tourism:
5.3 million visitors (winter 13/14)2

• public:
safety of infrastructure and people,
transport, . . .

1Winterbericht 2014/2015, Lawinenwarndienst Tirol.
2Statistisches Jahrbuch Bundesland Tirol, Amt der Tiroler Landesregierung.
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The Project: SnowSafeFX

Difficulties

• ensemble prediction system (EPS) too coarse

• small-scale features not well represented

• EPS often underdispersive1

Approach to solution

• down-scaling (in general)

• statistical post-processing (MOS)

1Mullen and Buizza (2001), Hagedorn et al. (2012).
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The Project: SnowSafeFX

0 4 8 12

Figure 1: Precipitation forecast for North Tyrol [mm day−1].
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Publication I

Stauffer, R., G. J. Mayr, J. W. Messner, N. Umlauf, and A. Zeileis (2016): Spatio-Temporal
Precipitation Climatology over Complex Terrain Using a Censored Additive Regression
Model. International Journal of Climatology, doi: 10.1002/joc.4913, in print.

10.1002/joc.4913


Introduction

Research goals

• develop a flexible statistical model

• spatio-temporal climatology

• daily resolution

• full climatological distribution

Challenges

• suitable response distribution

• effects to be considered
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Response Distribution
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precipitation [mm/month]

de
ns

ity

0 100 200 300 400 500

0.000

0.002

0.004

0.006

0.008

7



Response Distribution
Monthly precipitation sums

precipitation [ mm/month]

de
ns

ity

0 5 10 15 20

0.00

0.02

0.04

0.06

0.08

0.10

0.12

7



Response Distribution
Monthly precipitation sums

y = precipitation [ mm/month]
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Response Distribution
Daily precipitation sums
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Response Distribution
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Censoring

Can be seen as censored if:

• limited to a threshold and . . .

• values exceeding threshold cannot occur.

Examples

• survival in 5 yr clinical study: right yi 6 5

• hours worked this week: two sided 0 6 yi 6 168

• precipitation: left 0 6 yi

Model assumption
(1)
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Censoring
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Required Effects
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Figure 2: Empirical quantiles on a daily basis (1980-2012).
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Spatio-Temporal Model

Reminder
y ∼ N (µ, σ), precipitation = max(0, y)p (2)

Linear predictors

µ = β0 + s1(altitude) + s2(season) + s3(long,lat) + s4(season,long,lat) (3)

σ = γ0 + t1(altitude) + t2(season) + t3(long, lat) + t4(season, long, lat)

- y : latent response

- N (. . . ): Gaussian distribution

- µ,σ: latent location and scale

- p: power parameter

- β0: global intercepts

- s1: altitudinal effect

- s2: cyclic seasonal effect

- s3: spatial effect

- s4: mixed effect
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Data Set

• 118 stations3

• Tyrol and surrounding

• daily observations

• 1971 – 2012

• more than 1.5 million unique observations

• R package bamlss4
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3Bundesministerium für Forstwirtschaft, Umwelt und Wasserwirtschaft, Abteilung IV/4 – Wasserhaushalt.
4Umlauf et al. 2016: bamlss: Bayesian Additive Models for Location Scale and Shape (and Beyond).
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Results
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Figure 3: Climatological estimate. Location µ and scale σ on power-transformed latent scale.
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Figure 4: Climatological estimate. Probability of precipitation [%] and expectation [mm day−1].
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Results

Observed & estimated PDF
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Figure 5: Probability integral transform (PIT; Gneiting et al. 2007) histogram.
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Figure 6: Probability integral transform (PIT) histogram of climate estimate.
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Summary I

• power transformation to remove skewness

• censoring to handle zero-observations

• full climatological distribution

• “simple” generalized setup

• spatial/temporal resolution arbitrary scalable

• accurate estimate at station level

• probabilistic reference method

• background information for
statistical post-processing methods
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Best Student Poster Toyota Corporation Award
International Workshop of Statistical Modelling 2016

Publication II

Stauffer, R., G. J. Mayr, J. W. Messner, N. Umlauf, and A. Zeileis (2016): Ensemble
Post-Processing of Daily Precipitation Sums over Complex Terrain Using Censored
High-Resolution Standardized Anomalies. Monthly Weather Review, in proof.



Introduction

Numerical weather prediction (NWP)

1. analysis: → current state

2. prognosis:→ future state

Error sources

• observations

• simplified model world

• numerical approximation

• “unknown” atmospheric processes

Ensemble prediction systems (EPS)

• to quantify the uncertainty

• number of members restricted

• typically underdispersive
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Introduction

Forecast error

• total error = noise + systematic errors

• noise: unexplainable (signal-free)

• systematic errors: correction possible

Post-processing

• correct bias

• correct uncertainty

• discrete→ full distribution

• probabilities, quantiles, expectation
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Methodology
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Censored non-homogeneous logistic regression

precipitation = max(0, y)p with y ∼ L
(
µ, σ

)
µ = β0 + β1 · ens

σ = γ0 + γ1 · stdv(ens)

(4)
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Pointwise Post-Processing
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Pointwise models

• “relatively” simple

• interpolate ensemble

• apply censored non-homogeneous model

• one model for each station
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Pointwise Post-Processing
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• interpolate ensemble

• apply censored non-homogeneous model

• one model for each station
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Spatial Post-Processing
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Spatial model

• one model for all stations

• model: station independent

• full spatial prediction
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Spatial Post-Processing
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Spatial model

• one model for all stations

• model: station independent

• full spatial prediction
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Spatial Post-Processing

25



Spatial Post-Processing

25



Spatial Post-Processing

Standardized Anomaly Model Output Statistics (SAMOS5)

• Use climatology as background information

• . . . to remove location-dependent features

• . . . and to bring stations to a comparable scale.

5Dabernig et al. (2016): Spatial Ensemble Post-Processing with Standardized Anomalies.
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Spatial Post-Processing

Standardized Anomaly Model Output Statistics (SAMOS)

y − obsµ
obsσ

∼ L(µ, σ)

µ = β0 + β1 ·mean(
ens − ensµ

ensσ
)

σ = γ0 + γ1 · stdv(
ens − ensµ

ensσ
)

(5)

- y : observations1/p

- obsµ,obsσ : observed climatology

- L(. . . ): logistic distribution

- µ,σ: latent location and scale

- ens: latest EPS forecast1/p

- ensµ,ensσ : EPS climatology

- β0: global intercept

- β1: steepness coefficient
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Spatial Post-Processing
Observed µ

0.0 1.0 2.0

Observed σ

2.5 3.5 4.5 5.5

Figure 7: Spatio-Temporal Climatology, Stauffer et al. 2016.

Standardized Anomaly Model Output Statistics (SAMOS)

y − obsµ
obsσ

∼ L(µ, σ)

µ = β0 + β1 ·mean(
ens − ensµ

ensσ
)

σ = γ0 + γ1 · stdv(
ens − ensµ

ensσ
)

(6)
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Spatial Post-Processing
Ensemble µ

2.8 3.2 3.6

Ensemble σ

1.4 1.6 1.8

Figure 7: ECMWF ENS climatology: ECMWF reforecasts.

Standardized Anomaly Model Output Statistics (SAMOS)

y − obsµ
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∼ L(µ, σ)

µ = β0 + β1 ·mean(
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)
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)

(6)
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Spatial Post-Processing

Ensemble Mean

0 10 20

Standardized Anomaly Model Output Statistics (SAMOS)
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Spatial Post-Processing

Ensemble Mean

0 10 20

SAMOS Mean

0 10 20

Standardized Anomaly Model Output Statistics (SAMOS)
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SAMOS Data & Results
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Observations

• 118 stations

• daily observations

• 1971 – 2009; 2010 – 2012
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NWP data

• ECMWF ENS

• ECMWF reforecasts

• February 2010–2012

• ∆x/∆y : 25km

28



SAMOS Data & Results

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●
●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●
●

●

●

●

●

●
●

Observations

• 118 stations

• daily observations

• 1971 – 2009; 2010 – 2012

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

NWP data

• ECMWF ENS

• ECMWF reforecasts

• February 2010–2012

• ∆x/∆y : 25km

28



SAMOS Results: CRPSS
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Figure 7: Continuous ranked probability skill score using probabilistic spatio-temporal climatology as
reference method.
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reference method.
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SAMOS Results: CRPSS
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SAMOS Data & Results
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Figure 8: Rank histogram (left) and probability integral transform histograms (right) for
one-day-ahead and six-day-ahead forecasts.
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SAMOS Data & Results
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Figure 8: Rank histogram (left) and probability integral transform histograms (right) for
one-day-ahead and six-day-ahead forecasts.
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Summary II

• concept proofed for daily precipitation

• accurately predicts full distribution

• outperforms station-wise estimates

31



Best Student Paper Award 2015
Leopold-Franzens Universität

Publication III

Stauffer, R., G. J. Mayr, M. Dabernig, and A. Zeileis (2015): Somewhere Over the Rainbow:
How to Make Effective Use of Colors in Meteorological Visualizations. Bulletin of the
American Meteorological Society, 96(2), 203–216.



Introduction

Color

• integral element in graphical displays

• easily available in most common software languages

• omnipresent: publications, presentation slides, . . .

The Problem: Only little guidance about “how to choose appropriate colors” for a particular
task.

33



Introduction

Color

• integral element in graphical displays

• easily available in most common software languages

• omnipresent: publications, presentation slides, . . .

The Problem: Only little guidance about “how to choose appropriate colors” for a particular
task.

33



Introduction

Goal of our work

• raise the awareness

• introduce Hue-Chroma-Luminance (HCL) model
• based on human perception
• better control for choosing color palettes

• provide information on why and how to use

• provide convenient software for everyone
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The RGB Color Space

Figure 9: The Red-Green-Blue RGB color space.
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The RGB Color Space

=

Figure 9: The (in)famous Red-Green-Blue RGB rainbow palette.
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The RGB Color Space

RGB rainbow

RGB

RGB rainbow spectrum

0
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Red
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0.0
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1.0

• default color map in many software packages

• conveniently used by many practitioners

Question

Everybody does it – why should it be wrong?
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The RGB Color Space
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What is Wrong?

Original figure as published by NOAA.

NOAA forecast, www.noaa.gov, 2012-10-27.
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What is Wrong?

Original figure as published by NOAA.

Gradients
very strong

Saturation
highly-saturated
colors

Discontinuous
bright, dark,
bright, dark, ...
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What is Wrong?

Desaturated version of the original figure.
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What is Wrong?

Desaturated version of the original figure.

Assignment
no longer unique
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What is Wrong?

Desaturated version of the original figure.

Assignment
no longer unique

Interpretation
where is the maximum?

Focus
on dark artifacts
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What’s wrong?

Protanope sight (red-green weakness).

About 5% of all Europeans are affected.
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What’s wrong?

Protanope sight (red-green weakness).

About 5% of all Europeans are affected.

End-user
who is it?

To regard
visual constraints?
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Challenges

Summary: Colors in a palette should . . .

• be simple and natural,

• not be unappealing,

• highlight the important information,

• not mislead the reader,

• work everywhere and for everyone.

In practice

• People often do not think about it at all

• . . . and simply use default colors.

Potential problems

• for end-users – reviewer, supervisor, colleague, customer

• for your own day-to-day work
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Perception-Based Way: HCL
A HCL rainbow

HCL

HCL rainbow spectrum
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• Hue (defines the color )

• Chroma (defines the colorness) and

• Luminance (defines the brightness)
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Perception-Based Way: HCL

Advantages

• based on human perception

• easy to control

• simple to use

• improving readability, clarity

• helps transferring complex issues
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HCL Version

Same information, changed color scheme.

Colors
only two colors;
no irritating gradients

Information
guiding; no hidden
information

Works
screen; projector;
gray-scale device
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HCL Version

Desaturated sight of the HCL-version.
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HCL Version

Desaturated sight of the HCL-version.

Assignment
higher values
(more precipitation)
→ lower luminance

Focus
leads readers to most im-
portant areas
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HCL Version

Protanope sight of the HCL-version.
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HCL Version

Protanope sight of the HCL-version.Summary

Solved a lot of problems by changing the color palette.
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Summary III

Choice of colors

• use color with care, do not underestimate power of color

• think about who the reader/users are

• avoid large areas of flashy, highly-saturated colors

• employ monotonic luminance scale for continuous data

Try it yourself

• https://hclwizard.org

• interactive
• several export options
• information and guidance

• colorspace in R
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To Recapitulate
Climatology: latent location µ
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Part I

Spatio-Temporal Precipitation Climatology over Complex Terrain Using a Censored Additive
Regression Model.
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To Recapitulate
Precipitation forecast [mm/day]

2 4 6 8 10 12

Part II

Ensemble Post-Processing of Daily Precipitation Sums over Complex Terrain Using
Censored High-Resolution Standardized Anomalies.
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To Recapitulate
Precipitation forecast [mm/day]
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Part III

Somewhere Over the Rainbow: How to Make Effective Use of Colors in Meteorological
Visualizations.
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Thank you for your attention!

Special thanks to the SWAT, my colleagues and advisors, my family and
the FWF which made this possible!
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