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Numerical Weather Forecasts

@ Weather forecasts are typically provided by numerical forecast models
which use the current observed state of the atmosphere to simulate the
future weather by solving basic physical equations.

@ Numerical forecasts often have errors due to simplifications and imperfect
initial conditions.

@ Ensemble systems provide several independent weather forecasts based
on slightly modified initial states to obtain additional information about the
forecast uncertainty (large spread — high uncertainty).

@ Ensemble systems are not able to capture all possible error sources and
are typically underdispersive (too low uncertainty).

Statistical Post-Processing: Distributional regression models correct for sys-
tematic errors in location (mean), and scale (uncertainty).
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Figure 2: Real (90 m) and ensemble model topography (~ 40 km) of Tyrol, Austria.
In addition: observation sites, marker types indicate the altitude with respect to the underlying
topography.

Study Area: Tyrol, Austria; very complex topography (465—-3800 m a.m.s.l.).
Observations: Daily precipitation sums of 117 stations, 1971-2012.

Ensemble Model Data: ECMWEF reforecasts (training), ECMWF ensemble (pre-
diction). Training data set length for spatial SAMOS up to 9360 using most recent
four reforecast runs. Horizontal resolution ~ 40 km.

Climatologies: Observed climatology based on Stauffer et al. (2016), ensemble
model climatology for the ECMWF reforecasts (empirical mean/stdv).
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Verification: 10-fold cross-validated spatial
against two baseline methods: station-wise SAMQOS (
( ); verification includes the years 2010-2012.

Standardized Anomalies
Use climatological background information to remove site specific characteristics
and to bring all data to a comparable level.
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obs, ens: Precipitation observations and forecasts (daily sums)
p: Parameter of the power transformation
. Observations (response) on standardized anomaly scale
x. Ensemble forecasts on standardized anomaly scale
Lobs.clims ens.cim: Climatological mean of observations (obs) and the ensemble model (ens)
Tobs.clim» Oens.clim- Climatological standard deviation, corresponding to (tops ciims [ens.clim

SAMOS

Fit one regression model for all stations at once. Distributional regression model
with a power-transformed left-censored logistic distribution (Lens) to account for
the zero-observations and skewness.

~ Lcens(,ua 0) (2)
w=pPo+p1-(1—2z)+ Po-z-mean(x) (3)
o =7+ 71 - Z-log (stdv(x)) (4)
14, 0. Location and scale on the standardized anomaly scale
z: Binary split covariate. z = 0 if all ensemble forecasts = 0, and z = 1 otherwise
3, v: Regression coefficients
Prediction
1
obsr ~ Lcens (,u * Oobs,clim + Mobs.clim, O Uobs,clim) (5)

In the limiting case that the ensemble would not provide any information:
1 — 0, o — 1 and therefore the forecast would exactly be the climatology, the
most reliable information in this case.
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Figure 3: Raw ensemble forecast (left), post-processed SAMOS forecast (center), and
observed climatology (right) for May 18, 2010. Forecasts: mean precipitation amount in
mm day~ (top), frequency/probability receiving more than 5 mm day " (bottom).
Climatology: latent location riops ciim (top), and latent scale o ps cim (bOttom).
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Figure 4: Verification scores for the raw ensemble ( ), station-wise SAMOS ( ), and

spatial SAMOS ( ). Continuous Rank Probability Skill Score using the climatology as
reference. Scores for daily precipitation sums, one-day-ahead to six-day-ahead forecasts.

— Allows for fully probabilistic spatial ensemble correction
— Improved probabilistic forecast

— Anomalies preserve small-scale features

— Simple and computationally inexpensive model
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