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Introduction

Numerical Weather Prediction (NWP)

1. analysis: → current state

2. prognosis:→ future state

Error Sources

• observations

• simplified model world

• numerical approximation

• “unknown” atmospheric processes

Ensemble Prediction Systems

• to quantify the uncertainty

• number of members restricted

• typically underdispersive
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Introduction

Forecast Error

• total error = noise + systematic errors

• noise: unexplainable (signal-free)

• systematic errors: correction possible

Post-Processing

• correct bias

• correct uncertainty

• discrete→ full distribution

• probabilities, quantiles, extremes
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Final Product

To motivate

Live beta – impression of the “outcome” of the approach.
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Introduction to Methodology



Methodology

Introduce you to . . .

Left-Censored Non-Homogeneous Generalized Spatio-Temporal
Additive Regression Model for Daily Precipitation Sums Using
High-Resolution Standardized Anomalies

5



Methodology

Introduce you to . . .

Left-Censored Non-Homogeneous Generalized Spatio-Temporal
Additive Regression Model for Daily Precipitation Sums Using
High-Resolution Standardized Anomalies

5



Methodology
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Methodology

p=[0.05,0.95]
p=[0.25,0.75]

Generalized Additive Model
for Location, Shape, and Scale (GAMLSS)

obs = max(0, y) with y ∼ N
(
µ, σ

)

µ = β0 + s1(alt) + s2(lon, lat) + . . .

σ = γ0 + t1(doy, lon, lat) + . . .

(4)
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Methodology

To Summarize

• account for physical limit and large
fractions of 0 observations

• standard deviation
as a function of covariates

• including all kind of effects
(linear, multidim. splines, . . . )

• if geographical & date/time
covariates included

• simple linear additive framework

• stay tuned for the anomalies!
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Spatial Ensemble
Post-Processing:

The SAMOS Approach



Data

Observations

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●
●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●
●

●

●

●

●

●
●

• 118 stations

• daily observations

• 1971 – 2012

NWP Model
● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

• ECMWF ENS

• ECMWF reforecasts

• February 2010–2012

• ∆x/∆y : 25km

10



Data

Observations

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●
●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●
●

●

●

●

●

●
●

• 118 stations

• daily observations

• 1971 – 2012

NWP Model
● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

• ECMWF ENS

• ECMWF reforecasts

• February 2010–2012

• ∆x/∆y : 25km

10



Pointwise Post-Processing
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• interpolate ensemble

• apply censored non-homogeneous model

• one model for each station
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Spatial Post-Processing
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Spatial Model

• one model for all stations

• model station independent

• full spatial prediction
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Spatial Post-Processing
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Spatial Post-Processing

Ensemble Mean
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Spatial Model: Naive Assumption

obs = max(0, y) with y ∼ N
(
µ, σ

)
µ = β0 + β1 · ens

σ = γ0 + γ1 · stdv(ens)

(5)
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Spatial Post-Processing: SAMOS

Naive Assumption

• not suitable

• local features can’t be depict

⇒ different approach required

SAMOS: Post-Processing Using Standardized Anomalies1

• climatology as background knowledge

• local variations described by climatology

• climatology to remove location-dependent features

• bring stations to compareable scale

1Markus Dabernig: seminar in 3 weeks.
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Spatial Post-Processing: SAMOS
Reminder: Naive Assumption

obs = max(0, y) with y ∼ N
(
µ, σ

)
µ = β0 + β1 · ens

σ = γ0 + γ1 · stdv(ens)

(6)
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Spatial Post-Processing: SAMOS
Reminder: Naive Assumption

obs = max(0, y) with y ∼ N
(
µ, σ

)
µ = β0 + β1 · ens

σ = γ0 + γ1 · stdv(ens)

(6)

Standardized Anomaly Model Output Statistics (SAMOS)

obs = max(0, y) with
y − obsµ

obsσ
∼ N (µ, σ)

µ = β0 + β1 ·mean(
ens − ensµ

ensσ
)

σ = γ0 + γ1 · stdv(
ens − ensµ

ensσ
)

(7)
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SAMOS Results
Observed µ
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Observed σ
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Figure: Climatology of observations: Stauffer et al. 2016.

Standardized Anomaly Model Output Statistics (SAMOS)

obs = max(0, y) with
y − obsµ

obsσ
∼ N (µ, σ)

µ = β0 + β1 ·mean(
ens − ensµ

ensσ
)

σ = γ0 + γ1 · stdv(
ens − ensµ

ensσ
)

(8)
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SAMOS Results
Ensemble µ
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Ensemble σ
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Figure: ECMWF ENS climatology: ECMWF reforecasts.

Standardized Anomaly Model Output Statistics (SAMOS)

obs = max(0, y) with
y − obsµ

obsσ
∼ N (µ, σ)

µ = β0 + β1 ·mean(
ens − ensµ
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)

σ = γ0 + γ1 ·mean(
ens − ensµ

ensσ
)

(8)
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SAMOS Results
Ensemble Mean

0 10 20

SAMOS Mean
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Standardized Anomaly Model Output Statistics (SAMOS)

obs = max(0, y) with
y − obsµ

obsσ
∼ N (µ, σ)

µ = β0 + β1 ·mean(
ens − ensµ

ensσ
)

σ = γ0 + γ1 · stdv(
ens − ensµ

ensσ
)

(8)
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SAMOS Results

Model Comparison

• CRPS skill score: full distribution

• Mean Absolute Error: deterministic score

• Brier Score: probability obs > τ

Reference Methods

• ENS: uncorrected ECMWF ENS

• STN: stationwise regression model

• SAMOS: spatial regression model (loo)

• CLIM: climatological estimates
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SAMOS Results
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Note: ECEPS worse than the climatology in e.g., Axams, Hall, Imst, Oetz.
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SAMOS Results
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SAMOS Results
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SAMOS Results
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Summary & Outlook

SAMOS Approach

• concept proofed for daily precipitation

• accurately predicts full distribution

• outperforms station-wise estimates

• all historical observations included

• ECMWF reforecast: always on latest NWP cycle

Outlook

• e.g. wind direction dependent climatologies

• include additional predictors

• precipitation⇒ new snow
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Thank you for your attention!

Special thanks to the SWAT,
my collegues, and advisors!


