

Spatial Post-Processing over Complex Terrain using Standardized Anomalies

Reto Stauffer, Jakob Messner, Georg J. Mayr, Nikolaus Umlauf, and Achim Zeileis

Outline

- Introduction
- Motivation: Latest Forecast
- Methodology
- The SAMOS Approach
- Results

Numerical Weather Prediction (NWP)

1. analysis: \rightarrow current state

2. prognosis: \rightarrow future state

Numerical Weather Prediction (NWP)

- 1. analysis: → current state
- **2.** prognosis: → future state

Error Sources

- observations
- simplified model world
- numerical approximation
- "unknown" atmospheric processes

Numerical Weather Prediction (NWP)

- **1.** analysis: \rightarrow current state
- **2.** prognosis: → future state

Error Sources

- observations
- simplified model world
- numerical approximation
- "unknown" atmospheric processes

Ensemble Prediction Systems

to quantify the uncertainty

Numerical Weather Prediction (NWP)

- **1.** analysis: \rightarrow current state
- **2.** prognosis: → future state

Error Sources

- observations
- simplified model world
- numerical approximation
- "unknown" atmospheric processes

Ensemble Prediction Systems

- to quantify the uncertainty
- number of members restricted
- typically underdispersive

Forecast Error

• total error = noise + systematic errors

Forecast Error

• total error = noise + systematic errors

• *noise*: unexplainable (signal-free)

• systematic errors: correction possible

Forecast Error

- total error = noise + systematic errors
- noise: unexplainable (signal-free)
- systematic errors: correction possible

Post-Processing

- correct bias
- correct uncertainty

Forecast Error

- total error = noise + systematic errors
- noise: unexplainable (signal-free)
- systematic errors: correction possible

Post-Processing

- correct bias
- correct uncertainty
- discrete → full distribution
- probabilities, quantiles, extremes

Final Product

To motivate

Live beta – impression of the "outcome" of the approach.

Introduction to Methodology

Introduce you to ...

Left-Censored Non-Homogeneous Generalized Spatio-Temporal Additive Regression Model for Daily Precipitation Sums Using High-Resolution Standardized Anomalies

Introduce you to ...

Left-Censored Non-Homogeneous Generalized Spatio-Temporal Additive Regression Model for Daily Precipitation Sums Using High-Resolution Standardized Anomalies

$$\hat{obs} = \beta_0 + \beta_1 \cdot \overline{ens} \qquad (1)$$

$$\hat{\text{obs}} = \beta_0 + \beta_1 \cdot \overline{\textit{ens}} \qquad \text{(1)} \qquad \qquad \hat{\text{obs}} \sim \mathcal{N} \big(\mu, \sigma \big) \\ \mu = \beta_0 + \beta_1 \cdot \overline{\textit{ens}} \qquad \text{(2)}$$

$$\hat{\text{obs}} = \beta_0 + \beta_1 \cdot \overline{\textit{ens}} \qquad \text{(1)} \qquad \qquad \hat{\text{obs}} \sim \mathcal{N} \big(\mu, \sigma \big) \\ \mu = \beta_0 + \beta_1 \cdot \overline{\textit{ens}} \qquad \text{(2)} \\ \sigma = \gamma_0$$

obs
$$\sim \mathcal{N}(\mu, \sigma)$$

$$\mu = \beta_0 + \beta_1 \cdot \overline{\textit{ens}}$$

$$\sigma = \gamma_0$$
(3)

Censored Gaussian Regression

obs =
$$max(0, y)$$
 with $y \sim \mathcal{N}(\mu, \sigma)$
$$\mu = \beta_0 + \beta_1 \cdot \overline{ens}$$

$$\sigma = \gamma_0$$
 (3)

Censored Gaussian Regression

obs =
$$max(0, y)$$
 with $y \sim \mathcal{N}(\mu, \sigma)$
 $\mu = \beta_0 + \beta_1 \cdot \overline{ens}$ (3)
 $\sigma = \gamma_0$

Censored Non-Homogeneous Gaussian Regression

obs =
$$max(0, y)$$
 with $y \sim \mathcal{N}(\mu, \sigma)$

$$\mu = \beta_0 + \beta_1 \cdot \overline{ens}$$

$$\sigma = \gamma_0 + \gamma_1 \cdot \text{stdv(ens)}$$
(3)

Generalized Additive Model for Location, Shape, and Scale (GAMLSS)

obs =
$$max(0, y)$$
 with $y \sim \mathcal{N}(\mu, \sigma)$

(4)

Generalized Additive Model for Location, Shape, and Scale (GAMLSS)

obs =
$$max(0, y)$$
 with $y \sim \mathcal{N}(\mu, \sigma)$
 $\mu = \beta_0 + s_1(\text{alt}) + s_2(\text{lon}, \text{lat}) + \dots$ (4)

Generalized Additive Model for Location, Shape, and Scale (GAMLSS)

obs =
$$max(0, y)$$
 with $y \sim \mathcal{N}(\mu, \sigma)$
 $\mu = \beta_0 + s_1(\text{alt}) + s_2(\text{lon}, \text{lat}) + \dots$

$$\sigma = \gamma_0 + t_1(\text{doy}, \text{lon}, \text{lat}) + \dots$$
(4)

Generalized Additive Model for Location, Shape, and Scale (GAMLSS)

obs =
$$max(0, y)$$
 with $y \sim \mathcal{N}(\mu, \sigma)$
 $\mu = \beta_0 + s_1(\text{alt}) + s_2(\text{lon}, \text{lat}) + \dots$

$$\sigma = \gamma_0 + t_1(\text{doy}, \text{lon}, \text{lat}) + \dots$$
(4)

To Summarize

 account for physical limit and large fractions of 0 observations

- account for physical limit and large fractions of 0 observations
- standard deviation
 as a function of covariates

- account for physical limit and large fractions of 0 observations
- standard deviation
 as a function of covariates
- including all kind of effects (linear, multidim. splines, ...)

- account for physical limit and large fractions of 0 observations
- standard deviation
 as a function of covariates
- including all kind of effects (linear, multidim. splines, ...)
- if geographical & date/time covariates included

Methodology

To Summarize

- account for physical limit and large fractions of 0 observations
- standard deviation
 as a function of covariates
- including all kind of effects (linear, multidim. splines, ...)
- if geographical & date/time covariates included
- simple linear additive framework

Methodology

To Summarize

- account for physical limit and large fractions of 0 observations
- standard deviation
 as a function of covariates
- including all kind of effects (linear, multidim. splines, ...)
- if geographical & date/time covariates included
- simple linear additive framework
- stay tuned for the anomalies!

Spatial Ensemble Post-Processing: The SAMOS Approach

Data

Observations

- 118 stations
- daily observations
- 1971 2012

Data

Observations

- 118 stations
- daily observations
- 1971 2012

NWP Model

- ECMWF ENS
- ECMWF reforecasts
- February 2010–2012
- $\Delta x/\Delta y$: 25km

Pointwise Post-Processing

Single Station

- "relatively" simple
- interpolate ensemble
- apply censored non-homogeneous model
- one model for each station

Pointwise Post-Processing

Single Station

- "relatively" simple
- interpolate ensemble
- apply censored non-homogeneous model
- one model for each station

Spatial Model

- one model for all stations
- model station independent
- full spatial prediction

Spatial Model

- one model for all stations
- model station independent
- full spatial prediction

Spatial Model: Naive Assumption

obs =
$$max(0, y)$$
 with $y \sim \mathcal{N}(\mu, \sigma)$

$$\mu = \beta_0 + \beta_1 \cdot \overline{ens}$$

$$\sigma = \gamma_0 + \gamma_1 \cdot \text{stdv}(ens)$$
(5)

Spatial Model: Naive Assumption

obs =
$$max(0, y)$$
 with $y \sim \mathcal{N}(\mu, \sigma)$

$$\mu = \frac{\beta_0}{\rho} + \beta_1 \cdot \overline{ens}$$

$$\sigma = \gamma_0 + \gamma_1 \cdot \text{stdv}(ens)$$
(5)

Spatial Model: Naive Assumption

obs =
$$max(0, y)$$
 with $y \sim \mathcal{N}(\mu, \sigma)$

$$\mu = \beta_0 + \frac{\beta_1}{\sigma} \cdot \overline{ens}$$

$$\sigma = \gamma_0 + \gamma_1 \cdot \text{stdv}(ens)$$
(5)

Naive Assumption

- not suitable
- local features can't be depict

¹Markus Dabernig: seminar in 3 weeks.

Naive Assumption

- not suitable
- local features can't be depict
- ⇒ different approach required

¹Markus Dabernig: seminar in 3 weeks.

Naive Assumption

- not suitable
- local features can't be depict
- ⇒ different approach required

SAMOS: Post-Processing Using Standardized Anomalies¹

¹Markus Dabernig: seminar in 3 weeks.

Naive Assumption

- not suitable
- local features can't be depict
- ⇒ different approach required

SAMOS: Post-Processing Using Standardized Anomalies¹

- climatology as background knowledge
- local variations described by climatology

¹Markus Dabernig: seminar in 3 weeks.

Naive Assumption

- not suitable
- local features can't be depict
- ⇒ different approach required

SAMOS: Post-Processing Using Standardized Anomalies¹

- climatology as background knowledge
- local variations described by climatology
- climatology to remove location-dependent features
- bring stations to compareable scale

¹Markus Dabernig: seminar in 3 weeks.

Reminder: Naive Assumption

obs =
$$max(0, y)$$
 with $y \sim \mathcal{N}(\mu, \sigma)$
 $\mu = \beta_0 + \beta_1 \cdot \overline{ens}$ (6)
 $\sigma = \gamma_0 + \gamma_1 \cdot \text{stdv}(ens)$

Reminder: Naive Assumption

obs =
$$max(0, y)$$
 with $y \sim \mathcal{N}(\mu, \sigma)$
 $\mu = \beta_0 + \beta_1 \cdot \overline{ens}$ (6)
 $\sigma = \gamma_0 + \gamma_1 \cdot \operatorname{stdv}(\underline{ens})$

Reminder: Naive Assumption

obs =
$$max(0, y)$$
 with $y \sim \mathcal{N}(\mu, \sigma)$

$$\mu = \beta_0 + \beta_1 \cdot \overline{ens}$$

$$\sigma = \gamma_0 + \gamma_1 \cdot \text{stdv}(\underline{ens})$$
(6)

obs =
$$\max(0, y)$$
 with $\frac{y - obs_{\mu}}{obs_{\sigma}} \sim \mathcal{N}(\mu, \sigma)$
 $\mu = \beta_0 + \beta_1 \cdot \text{mean}(\frac{ens - ens_{\mu}}{ens_{\sigma}})$ (7)
 $\sigma = \gamma_0 + \gamma_1 \cdot \text{stdv}(\frac{ens - ens_{\mu}}{ens_{\sigma}})$

Figure: Climatology of observations: Stauffer et al. 2016.

obs =
$$\max(0, y)$$
 with $\frac{y - obs_{\mu}}{obs_{\sigma}} \sim \mathcal{N}(\mu, \sigma)$
 $\mu = \beta_0 + \beta_1 \cdot \text{mean}(\frac{ens - ens_{\mu}}{ens_{\sigma}})$ (8)
 $\sigma = \gamma_0 + \gamma_1 \cdot \text{stdv}(\frac{ens - ens_{\mu}}{ens_{\sigma}})$

Figure: ECMWF ENS climatology: ECMWF reforecasts.

obs =
$$\max(0, y)$$
 with $\frac{y - obs_{\mu}}{obs_{\sigma}} \sim \mathcal{N}(\mu, \sigma)$
 $\mu = \beta_0 + \beta_1 \cdot \text{mean}(\frac{ens - ens_{\mu}}{ens_{\sigma}})$ (8)
 $\sigma = \gamma_0 + \gamma_1 \cdot \text{mean}(\frac{ens - ens_{\mu}}{ens_{\sigma}})$

obs =
$$\max(0, y)$$
 with $\frac{y - obs_{\mu}}{obs_{\sigma}} \sim \mathcal{N}(\mu, \sigma)$
 $\mu = \beta_0 + \beta_1 \cdot \text{mean}(\frac{ens - ens_{\mu}}{ens_{\sigma}})$ (8)
 $\sigma = \gamma_0 + \gamma_1 \cdot \text{stdv}(\frac{ens - ens_{\mu}}{ens_{\sigma}})$

Model Comparison

• CRPS skill score: full distribution

• Mean Absolute Error: deterministic score

• **Brier Score**: probability $obs > \tau$

Model Comparison

- CRPS skill score: full distribution
- Mean Absolute Error: deterministic score
- **Brier Score**: probability $obs > \tau$

Reference Methods

- ENS: uncorrected ECMWF ENS
- STN: stationwise regression model
- SAMOS: spatial regression model (loo)
- CLIM: climatological estimates

CRPS Skill Scores

Note: ECEPS worse than the climatology in e.g., Axams, Hall, Imst, Oetz.

Summary & Outlook

SAMOS Approach

- concept proofed for daily precipitation
- accurately predicts full distribution
- outperforms station-wise estimates
- all historical observations included
- ECMWF reforecast: always on latest NWP cycle

Summary & Outlook

SAMOS Approach

- concept proofed for daily precipitation
- accurately predicts full distribution
- outperforms station-wise estimates
- all historical observations included
- ECMWF reforecast: always on latest NWP cycle

Outlook

- e.g. wind direction dependent climatologies
- include additional predictors
- precipitation ⇒ new snow

Thank you for your attention!

Special thanks to the *SWAT*, my collegues, and advisors!