Universität Innsbruck

High-Resolution Spatio-Temporal Precipitation Climatology in Complex Terrain

Reto Stauffer, Georg J. Mayr, Jakob Messner, Nikolaus Umlauf, Achim Zeileis Contact: reto.stauffer@uibk.ac.at

Introduction

High-resolution spatio-temporal climatologies of precipitation are important for e.g., agriculture, risk assessments, or tourism.

Problem: large proportion of **zero-observations** for high (daily) temporal resolutions (dry days). **A common solution:** decrease the temporal resolution to **monthly** or **yearly** sums to remove zeros (*Goovaerts 2000, Hijmans 2005, ...*).

Our goal

Provide a methodology to create climatologies with:

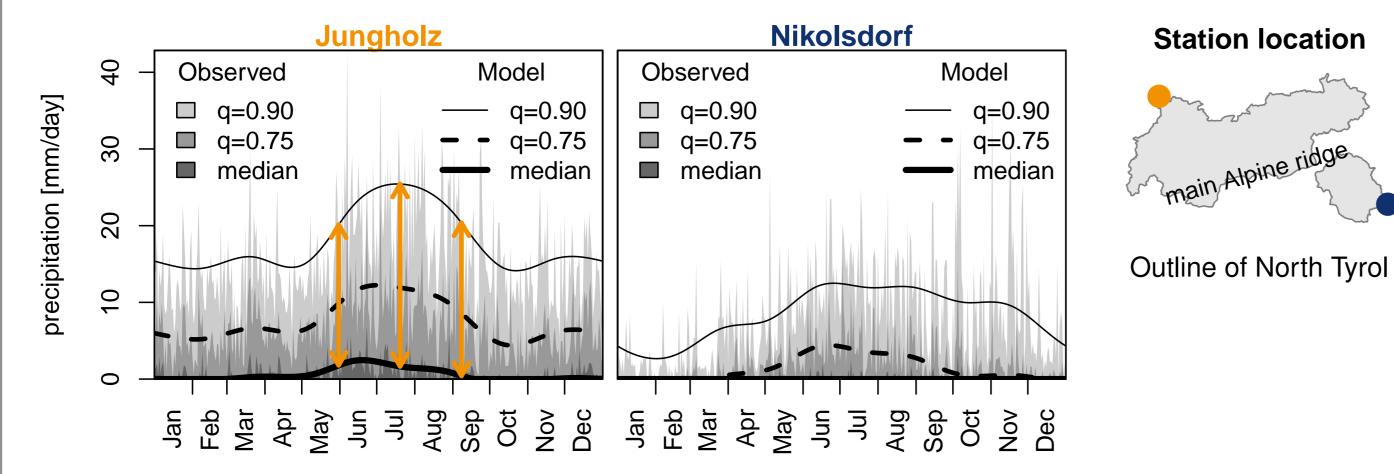
- daily temporal resolution (requires handling of zero-observations)
- full climatological distribution
- fully **scaleable** spatial domain/resolution
- no need for extensive or manual tuning for new areas

Model Setup

Generalized Additive Model for Location, Scale, and Shape

$$\mathbf{y}^* \sim \mathcal{N}(\mu, \sigma^2), \quad \mathbf{y} = \max(0, \mathbf{y}^*), \quad \mu = \eta_{\mu}, \quad \log(\sigma) = \eta_{\sigma}$$

$$\eta = \beta_0 + \underbrace{\beta_1 \text{ alt }}_{\text{altitude season}} + \underbrace{f_1(\text{yday})}_{\text{spatial season}} + \underbrace{f_2(\text{long, lat})}_{\text{spatial season}} + \underbrace{f_3(\text{yday, long, lat})}_{\text{spatial season}}$$


 \mathbf{y}^*/\mathbf{y} : latent/censored response η : linear predictor (identical for $\mu/\log(\sigma)$) $\mathcal{N}(\ldots)$: Gaussian distribution β : unknown coefficients $f_k(\ldots)$: non-linear multidimensional functions yday: day of the year μ/σ : mean and standard deviation long/lat/alt: geographical information

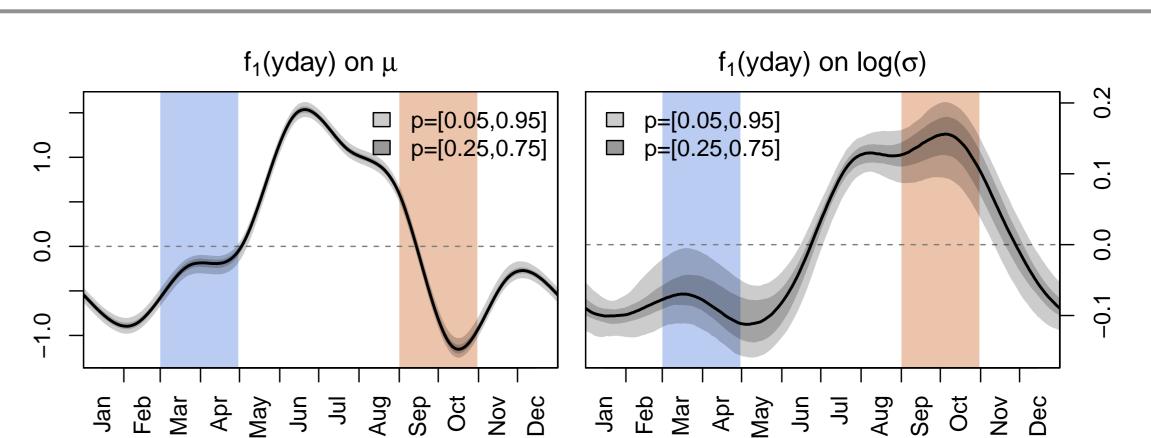
Precipitation (\mathbf{y}) is physically limited to ≥ 0 , which can be considered by an e.g., censored distribution (max(0, \mathbf{y}^*)). A novel Bayesian model framework was used to estimate the unknown coefficients (R package **bamlss**, Umlauf 2015).

Data & Data Analysis

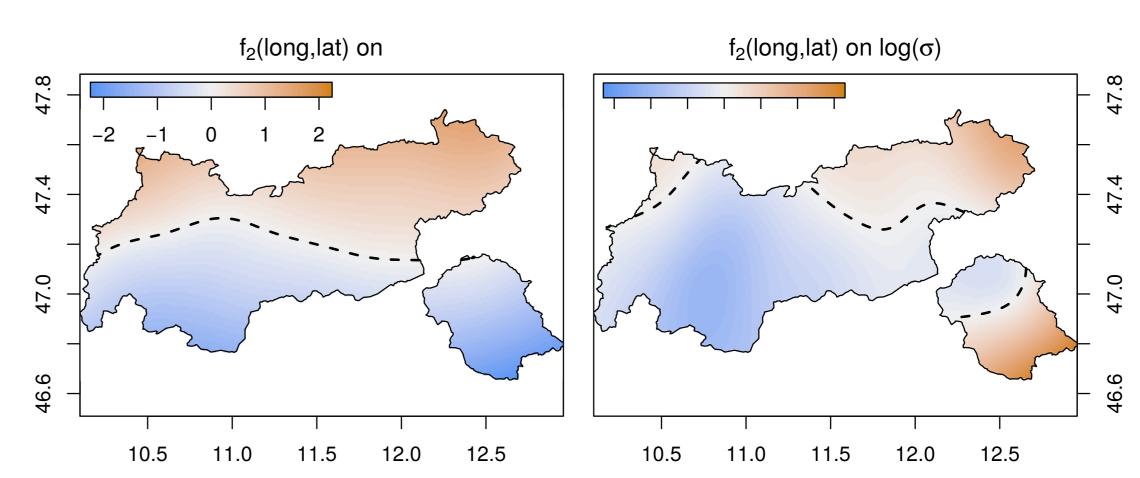
Data set

- 110 stations with quality controlled data; 510–2300*m a.m.s.l.*
- 24*h* sums observed at 06*UTC*
- 42 years of data (85% data availability)
- ullet 1'440'000 observations; fraction of zeros \sim 56%

Figure 1: Two sample stations; 0.90/0.75/0.50 quantiles are shown for both, the daily observed precipitation distribution over the last 33/24 years, and the in-sample fitted spatial climatology on a daily basis (final results).


Features captured by the statistical model

- seasonal pattern vary with location (e.g., north/south; Fig. 1)
- increased amount of precipitation during the summer season (Figs. 1&2)
- independent seasonal pattern for mean (μ) and variance (σ) (‡; Figs. 1&2)
- significantly drier south of the main Alpine ridge (Figs. 1&3)


Acknowledgements:

Ongoing project funded by the **Austrian Science Fund (FWF)**: TRP 290-N26. The computational results presented have been achieved in part using the **Vienna Scientific Cluster (VSC)**. Data set provided by the "Ministerium für ein lebenswertes Österreich", **hydrographical service Tyrol** (ehyd.gv.at).

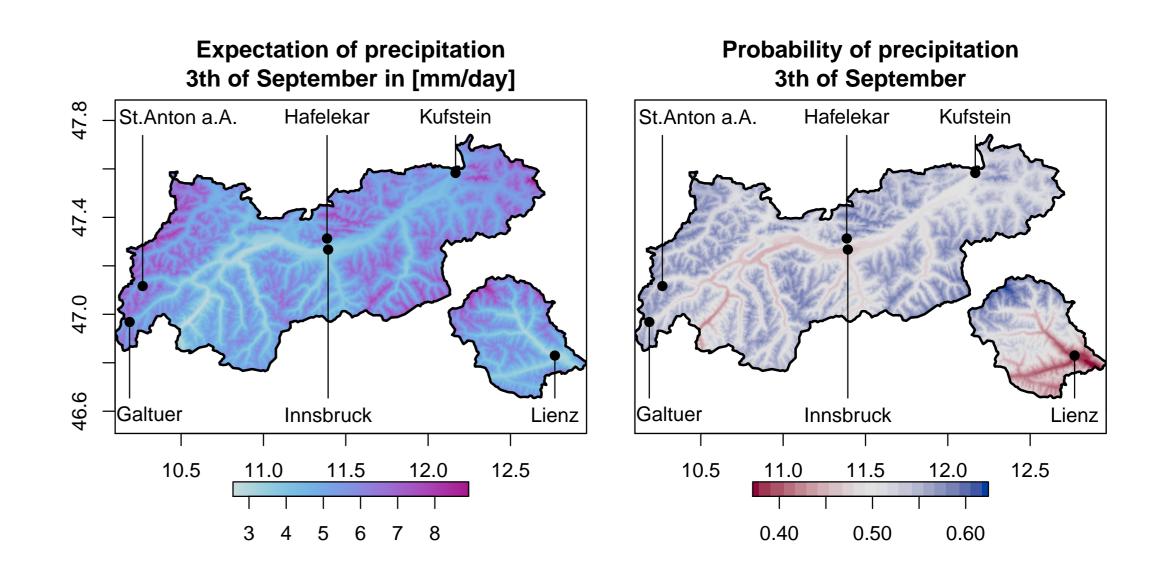

Model Results

Figure 2: Centered cyclic seasonal effect $f_1(yday)$. "**April weather**" (*blue*): increasing mean (μ) , local maximum of variability $(\log(\sigma))$. **Autumn** (*orange*): strongly decreasing mean (μ) with coincidentally increasing variability $(\log(\sigma))$.

Figure 3: Centered longitude/latitude effect $f_2(\log, \log)$. Mean (μ) : positive effect north while dry to the South/inner-alpine regions. Variance $(\log(\sigma))$: weaker variability within the Alps.

Figure 4: Estimated expectation (*left*) and probability of precipitation (*right*), 3. September. **Innsbruck**: expected precipitation amount: **3.5***mm*, probability of precipitation: **46**%. **Hafelekar**: expected precipitation amount: **6.4***mm*, probability of precipitation: **57**%.

Summary & Outlook

Current status

- zero-observations properly handled by the censored distribution
- highly resolved **spatio-temporal** model; **adaptable** to arbitrary scales
- full climatological distribution; allows extracting quantiles/probabilities
- accurate estimate on station level
- "simple", **generalized** setup

Planned extensions

- to include additional covariates (e.g., terrain dependent features, wind)
- to test different **distributions** (e.g., censored logistic)
- to include additional stations
- to compare with existing methods

References:

Goovaerts, P., 2000: Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. *Journal of Hydrology*, **228 (1–2)**, 113–129.

Hijmans, R. J. et al., 2005: Very high resolution interpolated climate surfaces for global land areas. *International Journal of Climatology*, **25 (15)**, 1965–1978.

Stauffer, R., et al., 2015: Spatio-temporal Censored Model of Precipitation Climatology. *Proceedings of IWSM 2015. Linz: Johannes Kepler University*, Proceedings Book **2015 (1)**, 366–371.

IWSM 2015. Linz: Johannes Kepler University, Proceedings Book **2015 (1)**, 366–371. Umlauf, N., et al., 2015: bamlss: Bayesian Additive Models for Location Scale and Shape (and Beyond). R package version 0.1-1 (https://R-Forge.R-project.org/R/?group_id=865).

