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Introduction

Estimated expectation of precipitation, 8th of July in [mm/day]
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Introduction

Estimated probability of precipitation, 8th of July
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Introduction

Our goal: precipitation climatology with ...

@ scalable spatial resolution (station < grid)

@ daily resolution

@ full climatological distribution

@ no extensive or manual tuning for new areas

Applications
@ alpine risk assessment
@ tourism
@ improving snow forecasts
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Strategy

Model setup

generalized additive model for 1x and 02 (GAMLSS)

altitude: linear effect

season: cyclic cubic spline

spatial: two dimensional thin-plate splines

spatially variable season: spatial variability on seasonal pattern

Open question

which distribution?
y ~ N(u,o?) not suitable for all aggregation levels



The data: monthly sums

Monthly sums
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The data: monthly sums

density
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Censoring

Can be seen as censored if ...
@ limited to a threshold
@ values exceeding threshold cannot occur or not observable

Examples
@ survival in 5 yr clinical study: right Yi<5
@ hours worked this week: two sided 0 < y; < 168
@ precipitation: left 0<y

Left censored Gaussian distribution

vy  ~N(u,0?), y=max(r =0,y")



The data: daily amounts
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Model setup

Assumptions

y ~D(p,0?), p=mn, log(c)=rn,

y response; daily precipitation (transformed)
D(...) left censored Gaussian distribution on 0
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Model setup

Assumptions

y ~D(p,0?), p=mn, log(c)=rn,

Linear predictor

n= 0o+ pralt + fi(yday) + £(long, lat) + f3(yday, long, lat)
—— N—— —_— -
altitude seasonal spatial spatial season

y response; daily precipitation (transformed)
D(...) left censored Gaussian distribution on 0
plo location/scale

1 linear predictor; identical for 1 and log(o)
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Model and Results

Model estimation
@ R package bamlss (Umlauf et al. (2015);
@ censored Gaussian distribution

Data set

Stations used

@ 110 stations

@ 41 years

@ daily rain/snow amounts
@ ~ 1.5 million observations




Model and Results
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Model and Results
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Model and Results

Expectation = E(y; | Wi, Oy)

o -
© -

=

T

k]

3

£

£

S ¥

T

&

3]

@

=3

3

)
~ -
o 4

Jan Feb Mar

Apr

May

Jun

Jul

Aug

Sep

Oct

Nov

Dec



Model and Results
Expectation = E(y; | Wi, Oy)

expectation [mm/day]

Jan Feb Mar Apr  May  Jun Jul Aug Sep  Oct Nov



Model and Results

expectation [mm/day]

Expectation = E(y; | Wi, Oy)




Model and Results

expectation [mm/day]

Expectation = E(y; | Wi, Oy)




Model and Results

Expectation = E(y; | Wi, Oy)
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Model and Results

expectation [mm/day]

Expectation = E(y; | Wi, Oy)

_| = = full spatial model
—— single station
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Summary

@ “simple”, generalized setup

@ full spatio-temporal model with censored response
@ spatial/temporal resolution arbitrary scalable

@ accurate estimate at station level




Summary

@ “simple”, generalized setup

@ full spatio-temporal model with censored response
@ spatial/temporal resolution arbitrary scalable

@ accurate estimate at station level

@ handling zero-observations

@ full climatological distribution
@ quantiles
@ probability of precipitation
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Thank you for your attention!

Further details:
Scientific article in progress.

Contact:

Reto Stauffer, Department of Statistics, University of Innsbruck.
reto.stauffer@uibk.ac.at.
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Model and Results

Model on monthly sums
@ R package mgcv
@ y = (monthly sums)%
oy~ N(u,0°)
® p=ny,log(c) =,

Error statistics ([mm/month])

Model on daily amounts

@ R package bamlss

@ y = (daily amounts)ﬂ?
® y* ~N(u,0?)

® f1= 1y, log(0) =1y

in-sample

out-of-sample

mgcv  bamlss | mgcv  bamlss

BIAS -0.13 0.58 | -0.21 0.77
MAE 37.62  37.37 | 38.41 37.90
RMSE | 50.44  50.17 | 51.42  50.84
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