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Introduction

Our goal: precipitation climatology with . . .

scalable spatial resolution (station⇔ grid)

daily resolution

full climatological distribution

no extensive or manual tuning for new areas

Applications

alpine risk assessment

tourism

improving snow forecasts
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Strategy

Model setup

generalized additive model for µ and σ2 (GAMLSS)

altitude: linear effect

season: cyclic cubic spline

spatial: two dimensional thin-plate splines

spatially variable season: spatial variability on seasonal pattern

Open question

which distribution?

y ∼ N (µ, σ2) not suitable for all aggregation levels
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The data: daily amounts
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Censoring

Can be seen as censored if . . .

limited to a threshold

values exceeding threshold cannot occur or not observable

Examples

survival in 5 yr clinical study: right yi 6 5

hours worked this week: two sided 0 6 yi 6 168

precipitation: left 0 6 yi

Left censored Gaussian distribution

y∗ ∼ N (µ, σ2), y = max(τ = 0, y∗)
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The data: daily amounts
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Model setup

Assumptions

y ∼ D(µ, σ2), µ = ηµ, log(σ) = ησ

Linear predictor

η = β0 + β1 alt︸ ︷︷ ︸
altitude

+ f1(yday)︸ ︷︷ ︸
seasonali

+ f2(long, lat)︸ ︷︷ ︸
spatial

+ f3(yday, long, lat)︸ ︷︷ ︸
spatial season

y response; daily precipitation (transformed)

D(. . . ) left censored Gaussian distribution on 0

µ/σ location/scale

η linear predictor; identical for µ and log(σ)
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Model and Results

Model estimation

R package bamlss (Umlauf et al. (2015); Poster 72)

censored Gaussian distribution

Data set

110 stations

41 years

daily rain/snow amounts

∼ 1.5 million observations
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Summary

“simple”, generalized setup

full spatio-temporal model with censored response

spatial/temporal resolution arbitrary scalable

accurate estimate at station level

handling zero-observations

full climatological distribution

quantiles

probability of precipitation

17



Summary

“simple”, generalized setup

full spatio-temporal model with censored response

spatial/temporal resolution arbitrary scalable

accurate estimate at station level

handling zero-observations

full climatological distribution

quantiles

probability of precipitation

17



Thank you for your attention!

Further details:
Scientific article in progress.

Contact:
Reto Stauffer, Department of Statistics, University of Innsbruck.
reto.stauffer@uibk.ac.at.
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Model and Results

Model on monthly sums

R package mgcv

y = (monthly sums)
1
2

y ∼ N (µ, σ2)

µ = ηµ, log(σ) = ησ

Model on daily amounts

R package bamlss

y = (daily amounts)
1

1.5

y∗ ∼ N (µ, σ2)

µ = ηµ, log(σ) = ησ

Error statistics ([mm/month])

in-sample out-of-sample

mgcv bamlss mgcv bamlss

BIAS -0.13 0.58 -0.21 0.77

MAE 37.62 37.37 38.41 37.90

RMSE 50.44 50.17 51.42 50.84
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